Skip to main content
Log in

Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Binary mutual diffusion coefficients D can be estimated from the width at half height W 1/2 of Taylor dispersion profiles using D=(ln 2)r 2 t R/(3W 2 h) and values of the retention time t R and dispersion tube radius r. The generalized expression D h=−(ln h)r 2 t R/(3W 2 h ) is derived to evaluate diffusion coefficients from peak widths W h measured at other fractional heights (e.g., (h = 0.1, 0.2,…,0.9). Tests show that averaging the D h values from binary profiles gives mutual diffusion coefficients that are as accurate and precise as those obtained by more elaborate nonlinear least-squares analysis. Dispersion profiles for ternary solutions usually consist of two superimposed pseudo-binary profiles. Consequently, D h values for ternary profiles generally vary with the fractional peak height h. Ternary profiles with constant D h values can however be constructed by taking appropriate linear combinations of profiles generated using different initial concentration differences. The invariant D h values and corresponding initial concentration differences give the eigenvalues and eigenvectors for the evaluation of the ternary diffusion coefficient matrix. Dispersion profiles for polymer samples of N i-mers consist of N superimposed pseudo-binary profiles. The edges of these profiles are enriched in the heavier polymers owing to the decrease in polymer diffusion coefficients with increasing polymer molecular weight. The resulting drop in D h with decreasing fractional peak height provides a signature of the polymer molecular weight distribution. These features are illustrated by measuring the dispersion of mixed polyethylene glycols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. V. Tyrrell and K. R. Harris, Diffusion in Liquids (Butterworths, London, 1984).

    Google Scholar 

  2. C. Erkey and A. Akgerman, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell, London, 1991).

  3. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Butterworths, London, 1959, 2nd ed.).

    Google Scholar 

  4. E. L. Cussler, Multicomponent Diffusion (Elsevier, Amsterdam, 1976).

    Google Scholar 

  5. D. G. Leaist, Dissolution into Multicomponent Solutions. Benzoic Acid and Aqueous Sodium Hydroxide, J. Colloid Interface Sci. 126, 561–568 (1988).

    Article  CAS  Google Scholar 

  6. D. G. Leaist, Dissolution and Precipitation during Leaching of Porous Ionic Solids, J. Colloid Interface Sci. 118, 262–269 (1987).

    Article  CAS  Google Scholar 

  7. D. G. Leaist, P. Anderson, and J. C. Elliot, Diffusion Coefficients for the Ternary System Ca(OH)2–H3PO4–water, J. Chem. Soc., Faraday Trans. 86, 3093–3095 (1990).

    Article  CAS  Google Scholar 

  8. N. Curtis and D. G. Leaist, Interdiffusion of Aqueous Silver Nitrate and Potassium Chromate and the Periodic Precipitation of Silver Chromate Liesegang Bands, Ber. Bunsenges. Phys. Chem. 102, 164–176 (1998).

    CAS  Google Scholar 

  9. D. G. Leaist, Y. Li, and R. Poissant, Coupled Diffusion in Aqueous Weak Acid + Alkanolamine Absorbents, J. Chem. Eng. Data 43, 1048–1056 (1998).

    Article  CAS  Google Scholar 

  10. D. G. Leaist, Absorption of Chlorine into Water, J. Solution Chem. 15, 827–838 (1986).

    Article  CAS  Google Scholar 

  11. D. G. Leaist, Absorption and Diffusion of Sulphur Dioxide into Aqueous Sodium Chloride Solutions, J. Chem. Soc., Faraday Trans. 84(1), 581–589 (1988).

    CAS  Google Scholar 

  12. D. G. Leaist, Relating Multicomponent Mutual Diffusion and Intradiffusion for Associating Solutes. Application to Water-in-oil Microemulsions, Phys. Chem. Chem. Phys. 4, 4732–4739 (2002).

    Article  CAS  Google Scholar 

  13. L. Hao and D. G. Leaist, Size Distribution Model for Chemical Interdiffusion in Water/AOT/heptane Microemulsions, J. Phys. Chem. Soc. 99, 12896–12901 (1995).

    Article  Google Scholar 

  14. D. G. Leaist and L. Hao, A Model for Chemical Interdiffusion of Solubilizates and Ionic Micelles, J. Chem. Soc., Faraday Trans. 91, 2837–2842 (1995).

    Article  CAS  Google Scholar 

  15. D. G. Leaist, Coupled Diffusion of Butanol Solubilized in Aqueous Sodium Dodecylsulfate Micelles, Can. J. Chem. 68, 33–35 (1990).

    Article  CAS  Google Scholar 

  16. D. G. Leaist, Coupled Tracer Diffusion Coefficients of Solubilizates in Ionic Micelle Solutions from Liquid Chromatography, J. Solution Chem. 20, 175–186 (1991).

    Article  CAS  Google Scholar 

  17. E. L. Cussler, Membranes which Pump, AIChE J. 17, 1300–1303 (1971).

    Article  CAS  Google Scholar 

  18. J. S. Schultz, J. D. Goddard, and S. R. Suchdeo, Facilitated Transport via Carrier-mediated Diffusion in Membranes. II. Mathematical Aspects and Analyses, AIChE J. 20, 625–645 (1974).

    Article  Google Scholar 

  19. D. G. Leaist, Diffusion in Aqueous Copper Sulfate and Copper Sulfate–sulfuric Acid Solutions, J. Solution Chem. 16, 813–825 (1987).

    Article  Google Scholar 

  20. D. G. Leaist, Mass Transport in Aqueous Zinc Chloride–Potassium Chloride Electrolytes, Ber. Bunsenges. Phys. Chem. 90, 797–802 (1986).

    CAS  Google Scholar 

  21. L. Hao and D. G. Leaist, Quaternary Diffusion Coefficients of NaCl–MgCl2–MgSO4–water Synthetic Seawaters from Taylor Dispersion Profiles, J. Solution Chem. 22, 263–277 (1993).

    Article  Google Scholar 

  22. D. G. Leaist, Concentration Oscillations during Diffusion with Slow First-order Reaction in Aqueous Solutions of Trans-dichlorobis-(ethane-1,2-diamine)cobalt(III) chloride, Aust. J. Chem. 41, 469–481 (1988).

    Article  CAS  Google Scholar 

  23. D. G. Leaist, Coupled Transport of Iodide Ions during Interdiffusion of Aqueous HCl and NaOH, Can. J. Chem. 65, 2489–2494 (1987).

    CAS  Google Scholar 

  24. K. C. Pratt and W. A. Wakeham, Mutual Diffusion Coefficient for Binary Mixtures of water and the isomers of Propanol, Proc. Roy. Soc. Lond. Ser. A 342, 401–419 (1975).

  25. A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham, The Theory of the Taylor Dispersion Technique for Liquid Diffusivity Measurements, Int. J. Thermophys. 1, 243–284 (1980).

    Article  CAS  Google Scholar 

  26. D. G. Leaist and L. Hao, Gravitational Stability of Taylor Dispersion Profiles. Revised Diffusion Coefficients for Barium Chloride–Potassium Chloride–Water, J. Phys. Chem. 97, 1464–1469 (1993).

    Article  CAS  Google Scholar 

  27. D. G. Leaist, Ternary Diffusion Coefficients of 18-crown-6-ether–KCl–Water by Direct Least-squares Analysis of Taylor Dispersion Profiles, J. Chem. Soc., Faraday Trans. 76, 597–601 (1991).

    Article  Google Scholar 

  28. Z. Deng and D. G. Leaist, Ternary Mutual Diffusion Coefficients of MgCl2 + MgSO4 + H2O and Na2SO4 + MgSO4 + H2O from Taylor Dispersion Profiles, Can. J. Chem. 69, 1548–1553 (1991).

    Article  CAS  Google Scholar 

  29. D. G. Leaist, L. Hao, and R. Abragimov, Moments Analysis of Strongly Coupled Diffusion in Taylor Dispersion Profiles, J. Chem. Soc., Faraday Trans. 89, 515–519 (1993).

    Article  CAS  Google Scholar 

  30. D. G. Leaist, Diffusion Coefficients of Four-component Systems Taylor Dispersion Profiles. Sucrose + LiCl + KCl + Water and NBu4Br + LiBr + KBr + Water, Ber. Bunsenges. Phys. Chem. 95, 119–122 (1991).

    Google Scholar 

  31. W. Boyle, R. F. Buchholz, J. A. Neal, and J. L. McCarthy, Flow Injection Analysis Estimation of Diffusion Coefficients of Pauci-disperse and Polydisperse Polymers Such as Poly(styrenesulfonates), J. Appl. Polym. Sci. 42, 1969–1977 (1991).

    Article  CAS  Google Scholar 

  32. L. Paduano, R. Sartorio, G. D'Errico, and V. Vitagliano, Mutual Diffusion in Aqueous Solution of Ethylene Glycol Oligomers at 25 C, J. Chem. Soc., Faraday Trans. 94, 2571–2576 (1998).

    Article  CAS  Google Scholar 

  33. L. Paduano, C. Delia Volpe, L. Constantino, and V. Vitagliano, Diffusion and Double diffusive Convection in the Isothermal Barium Chloride–Potassium Chloride–Water System at 25 C, J. Solution Chem. 22, 767–768 (1993).

    Article  CAS  Google Scholar 

  34. K. R. Harris, On the Use of the Edgeworth-Cramer Series to Obtain Diffusion Coeffcients from Taylor Dispersion Peaks, J. Solution Chem. 20, 595–606 (1991).

    Google Scholar 

  35. P. J. Dunlop, Diffusion and Frictional Coefficients for two Concentrated Compositions of the System Water–Mannitol–Sodium Chloride at 25 C. Tests of the Onsager Reciprocal Relation, J. Phys. Chem. 69, 4276–4283 (1965).

    Article  CAS  Google Scholar 

  36. D. G. Leaist and R. A. Noulty, An Eigenvalue Method for Determination of Multicomponent Diffusion Coefficients. Application to NaOH + NaCl + H2O Mixtures, Can. J. Chem. 63, 476–482 (1985).

    Article  CAS  Google Scholar 

  37. P. Jakupi, H. Halvorsen, and D. G. Leaist, A Thermodynamic Interpretation of the “Excluded-Volume” Effect in Coupled Diffusion, J. Phys. Chem. B 108, 7978–7985 (2004).

    Article  CAS  Google Scholar 

  38. B. Kelly and D. G. Leaist, Using Taylor Dispersion Profiles to Characterize Polymer Molecular Weight Distributions, Phys. Chem. Chem. Phys. 4, 5523–5530 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Leaist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callendar, R., Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J Solution Chem 35, 353–379 (2006). https://doi.org/10.1007/s10953-005-9000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-9000-2

Keywords

Navigation