Skip to main content
Log in

Absorption of chlorine into water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubility and diffusion data have been used to describe absorption of chlorine into water. When the gas dissolves in water, hydrochloric acid produced by partial hydrolysis of molecular chlorine diffuses rapidly into the bulk liquid. Because the surface of the absorbent is depleted in hydrochloric acid, the solubility of chlorine in the interfacial liquid is significantly higher than the equilibrium solubility at the same chlorine partial pressure. During desorption of dissolved chlorine, hydrochloric acid diffuses from the interior and collects in the interfacial region. Differential equations for absorption and desorption with coupled flow of a second solute component are solved numerically. Calculated concentration profiles are in good agreement with profiles estimated by chemical analysis of layers of absorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Kim and J. Jorné,J. Electrochem. Soc. 124, 1473 (1977).

    Google Scholar 

  2. J. T. Kim an J. Jorné,J. Electrochem. Soc. 125, 89 (1978).

    Google Scholar 

  3. A. Tang and O. C. Sandall,J. Chem. Eng. Data 30, 189 (1985).

    Google Scholar 

  4. H. Kramers, R. A. Douglas, and R. M. Ulmann,Chem. Eng. Sci. 10, 190 (1959).

    Google Scholar 

  5. C. W. Spalding,AIChE J. 8, 685 (1962).

    Google Scholar 

  6. O. W. Peaceman, Sc. D. Thesis, M.I.T., Cambridge, MA, 1951.

  7. R. E. Connick and Y. T. Chia,J. Am. Chem. Soc. 81, 1280 (1959).

    Google Scholar 

  8. D. G. Leaist,J. Phys. Chem. 89, 1486 (1985).

    Google Scholar 

  9. M. S. Sherill and E. F. Izard,J. Am. Chem. Soc. 53, 1667 (1931).

    Google Scholar 

  10. R. P. Whitney and J. E. Vivian,Ind. Eng. Chem. 33, 741 (1941).

    Google Scholar 

  11. E. A. Guggenheim and J. C. Turgeon,Trans. Faraday Soc. 51, 747 (1955).

    Google Scholar 

  12. F. W. Adams and R. G. Edmonds,Ind. Eng. Chem. 29, 447 (1937).

    Google Scholar 

  13. J. A. Harpst, E. Holt, and P. A. Lyons,J. Phys. Chem. 69, 2333 (1965).

    Google Scholar 

  14. M. S. Chao,J. Electrochem. Soc. 115, 1172 (1968).

    Google Scholar 

  15. H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, 2nd edn., (Oxford University Press, London, 1959), p. 89.

    Google Scholar 

  16. J. Crank,The Mathematics of Diffusion, 2nd edn., (Oxford University Press, London, 1975), p. 105.

    Google Scholar 

  17. M. Nagasawa and H. Fujita,J. Am. Chem. Soc. 86, 3005 (1964).

    Google Scholar 

  18. D. G. Leaist,J. Phys. Chem. 87, 4936 (1983).

    Google Scholar 

  19. F. Sutton,A. Systematic Handbook of Volumetric Analysis, 13th edn., (Butterworths, London, 1955), p. 313.

    Google Scholar 

  20. P. V. Vitagliano, C. D. Volpe, and V. Vitagliano,J. Solution Chem. 13, 549 (1984).

    Google Scholar 

  21. W. D. Seufert and R. N. O'Brien,J. Phys. Chem. 88, 829 (1984).

    Google Scholar 

  22. G. E. Forsythe and W. R. Wasow,Finite Difference Methods for Partial Differential Equations, (Wiley, New York, 1960).

    Google Scholar 

  23. R. W. Hornbeck,Numerical Methods, (Prentice-Hall, Englewood Cliffs, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leaist, D.G. Absorption of chlorine into water. J Solution Chem 15, 827–838 (1986). https://doi.org/10.1007/BF00646090

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646090

Key Words

Navigation