Skip to main content
Log in

Simulation of strong ground motion for the 25 April 2015 Nepal (Gorkha) Mw 7.8 earthquake using the SCEC broadband platform

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The 25th April 2015 Nepal (Gorkha) earthquake has been introduced into the SCEC BBP v15.3, and validation simulations are run using EXSIM methodology with the strong ground motion data of the earthquake. Synthetic seismograms are generated along with the response spectra for engineering applications. Goodness-of-fit metrics have been computed from response spectra for 14 stations located in the Central Indo-Gangetic Plains (CIGP). Plots of residuals are made as a function of hypocentral distance for various time periods. Spatial distribution of residuals as well as average residuals for all stations for the horizontal components are computed. The results demonstrate that there was a good match between the actual data and synthetics generated by the broadband platform. Finally, four of the widely used ground motion prediction equations around the world are chosen to compare how they predict the synthetics for Gorkha earthquake in CIGP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ader T, Avouac JP, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota SN, Rajaure S, Shrestha P, Ding L, Flouzat M (2012) Convergence rate across the Nepal Himalaya and interseismic coupling on the main Himalayan thrust: implications for seismic hazard. Journal of Geophysical Research: Solid Earth 117(B4). doi:10.1029/2011JB009071

  • Anderson JG (2014) The composite source model for broadband simulations of strong ground motions. Seismol Res Lett. doi:10.1785/0220140098

    Google Scholar 

  • Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93(4):1703–1729

    Article  Google Scholar 

  • Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96(6):2181–2205

    Article  Google Scholar 

  • Atkinson GM, Assatourians K (2015) Implementation and validation of EXSIM (a stochastic finite-fault ground-motion simulation algorithm) on the SCEC broadband platform. Seismol Res Lett 86(1):48–60

    Article  Google Scholar 

  • Avouac JP (2003) Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Adv Geophys 46:1–80

    Article  Google Scholar 

  • Avouac JP, Meng L, Wei S, Wang T, & Ampuero JP (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci

  • Beresnev IA, Atkinson GM (1998) Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites. Bull Seismol Soc Am 88(6):1392–1401

    Google Scholar 

  • Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. BullSeismol Soc Am 73:1865–1894

    Google Scholar 

  • Boore DM (2001) Comparisons of ground motions from the 1999 chi-chi earthquake with empirical predictions largely based on data from California. Bull Seismol Soc Am 91(5):1212–1217

    Article  Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160:635–675

    Article  Google Scholar 

  • Boore DM (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seismol Soc Am 99:3202–3216

    Article  Google Scholar 

  • Boore DM (2010) Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bull Seismol Soc Am 100(4):1830–1835

    Article  Google Scholar 

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra 24(1):99–138

    Article  Google Scholar 

  • Chadha RK, Srinagesh D, Srinivas D, Suresh G, Sateesh A, Singh SK, Pérez-Campos X, Suresh G, Koketsu K, Masuda T, Domen K, Ito T (2016) CIGN, a strong-motion seismic network in central indo-Gangetic Plains, foothills of Himalayas: first results. Seismol Res Lett 87(1):37–46

    Article  Google Scholar 

  • Crempien JG, Archuleta RJ (2014) UCSB method for simulation of broadband ground motion from kinematic earthquake sources. Seismol Res Lett 86(1):61–67. doi:10.1785/0220140103

    Article  Google Scholar 

  • Dhanya J, Gade M, Raghukanth STG (2016) Ground motion estimation during 25th April 2015 Nepal earthquake. Acta Geodaetica et Geophysica:1–25

  • Dreger DS, Beroza GC, Day SM, Goulet CA, Jordan TH, Spudich PA, Stewart JP (2015) Validation of the SCEC broadband platform v14. 3 simulation methods using pseudospectral acceleration data. Seismol Res Lett 86(1):39–47

    Article  Google Scholar 

  • Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth 86(B4):2825–2852

    Article  Google Scholar 

  • Ekström G, Nettles M, Dziewoński AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200:1–9

    Article  Google Scholar 

  • Galetzka J, Melgar D, Genrich JF, Geng J, Owen S, Lindsey EO, Xu X, Bock Y, Avouac JP, Adhikari LB, Upreti BN, Pratt-Sitaula B, Bhattarai TN, Sitaula BP, Moore A, Hudnut KW, Szeliga W, Normandeau J, Fend M, Flouzat M, Bollinger L, Shrestha P, Koirala B, Gautam U, Bhatterai M, Gupta R, Kandel T, Timsena C, Sapkota SN, Rajaure S, Maharjan N (2015) Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science 349(6252):1091–1095

    Article  Google Scholar 

  • Galvez P, Ampuero JP, Dalguer LA, Somala SN, Nissen-Meyer T (2014) Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake. Geophys J Int 198(2):1222–1240

    Article  Google Scholar 

  • Goda K, Kiyota T, Pokhrel RM, Chiaro G, Katagiri T, Sharma K, Wilkinson S (2015) The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey. Frontiers in Built Environment 1:8

    Google Scholar 

  • Goulet CA, Abrahamson NA, Somerville PG, Wooddell KE (2015) The SCEC broadband platform validation exercise: methodology for code validation in the context of seismic-hazard analyses. Seismol Res Lett 86(1):17–26

    Article  Google Scholar 

  • Graves RW, Pitarka A (2010) Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123

    Article  Google Scholar 

  • Graves R, Pitarka A (2015) Refinements to the graves and Pitarka (2010) broadband ground-motion simulation method. Seismol Res Lett 86(1):75–80

    Article  Google Scholar 

  • Gupta ID (2006) Delineation of probable seismic sources in India and neighbourhood by a comprehensive analysis of seismotectonic characteristics of the region. Soil Dyn Earthq Eng 26:766–790

    Article  Google Scholar 

  • Hartzell SH (1978) Earthquake aftershocks as Green's functions. Geophys Res Lett 5(1):1–4

    Article  Google Scholar 

  • Hartzell S, Harmsen S, Frankel A, Larsen S (1999) Calculation of broadband time histories of ground motion: comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bull Seismol Soc Am 89(6):1484–1504

    Google Scholar 

  • Irikura K (1978) Semi-empirical estimation of strong ground motions during large earthquakes. Bull Disast Prev Res Inst, Kyoto Univ 33:63–104

    Google Scholar 

  • Iyengar RN, Chadha RK, Balaji Rao K, & Raghukanth STG (2010) Development of probabilistic seismic hazard map of India. Report on the National Disaster Management Authority, Government of India, India

  • Katel TP, Upreti BN, Pokharel GS (1996) Engineering properties of fine grained soils of Kathmandu Valley Nepal. Journal of Nepal Geological Society 13:121–138

    Google Scholar 

  • Kumar A, Mittal H, Sachdeva R, Kumar A (2012) Indian strong motion instrumentation network. Seismol Res Lett 83(1):59–66

    Article  Google Scholar 

  • Maechling PJ, Silva F, Callaghan S, Jordan TH (2015) SCEC broadband platform: system architecture and software implementation. Seismol Res Lett 86(1):27–38

    Article  Google Scholar 

  • Mai PM, Imperatori W, Olsen KB (2010) Hybrid broadband ground-motion simulations: combining long-period deterministic synthetics with high-frequency multiple S-to-S backscattering. Bull Seismol Soc Am 100(5A):2124–2142

    Article  Google Scholar 

  • Moss RES, Thompson EM, Kieffer DS, Tiwari B, Hashash YMA, Acharya I, Adhikari BR, Asimaki D, Clahan KB, Collins BD, Dahal S, Jibson RW, Khadka D, Macdonald A, Madugo CLM, Mason HB, Pehlivan M, Rayamajhi D, Uprety S (2015) Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks. Seismol Res Lett 86(6):1514–1523

    Article  Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95:995–1010

    Article  Google Scholar 

  • Nath SK, Vyas M, Pal I, Sengupta P (2005) A seismic hazard scenario in the Sikkim Himalaya from seismotectonics, spectral amplification, source parameterization, and spectral attenuation laws using strong motion seismometry. Journal of Geophysical Research: Solid Earth 110(B1)

  • Olsen K, Takedatsu R (2014) The SDSU broadband ground-motion generation module BBtoolbox version 1.5. Seismol Res Lett 86(1):81–88. doi:10.1785/0220140102

    Article  Google Scholar 

  • Raghukanth STG, Somala SN (2009) Modeling of strong-motion data in northeastern India: Q, stress drop, and site amplification. Bull Seismol Soc Am 99(2A):705–725

    Article  Google Scholar 

  • Sakai H, Fujii R, Kuwahara Y (2002) Changes in the depositional system of the paleo-Kathmandu Lake caused by uplift of the Nepal lesser Himalayas. J Asian Earth Sci 20:267–276

    Article  Google Scholar 

  • Schmedes J, Archuleta RJ, Lavallée D (2010) Correlation of earthquake source parameters inferred from dynamic rupture simulations. Journal of Geophysical Research: Solid Earth (B3):115

  • Sharma ML (1998) Attenuation relationship for estimation of peak ground horizontal acceleration using data from strong-motion arrays in India. Bull Seismol Soc Am 88(4):1063–1069

    Google Scholar 

  • Sharma ML, Douglas J, Bungum H, Kotadia J (2009) Ground-motion prediction equations based on data from the Himalayan and Zagros regions. J Earthq Eng 13(8):1191–1210

    Article  Google Scholar 

  • Singh RP, Aman A, Prasad YJJ (1996) Attenuation relations for strong seismic ground motion in the Himalayan region. Pure Appl Geophys 147(1):161–180

    Article  Google Scholar 

  • Singh SK, Garcia D, Pacheco JF, Valenzuela R, Bansal BK, Dattatrayam RS (2004) Q of the Indian shield. Bull Seismol Soc Am 94(4):1564–1570

    Article  Google Scholar 

  • Somala SN (2015) Near-field ground motion simulations for Gorkha earthquake. In 52nd annual convention “Near surface Earth system sciences” (p. 30)

  • Star LM, Stewart JP, Graves RW (2011) Comparison of ground motions from hybrid simulations to NGA prediction equations. Earthquake Spectra 27(2):331–350

    Article  Google Scholar 

  • Valdiya KS (1976) Himalayan transverse faults and folds and their parallelism with subsurface structures of the northern Indian Plains. Tectonophysics 32:353–386

    Article  Google Scholar 

  • Wald DJ, Earle PS, Allen TI, Jaiswal K, Porter K, & Hearne M (2008) Development of the US Geological Survey’s PAGER system (prompt assessment of global earthquakes for response), in Proceedings of the 14th world conference on earthquake engineering

  • Yu G, Khattri KN, Anderson JG, Brune JN, Zeng Y (1995) Strong ground motion from the Uttarkashi, Himalaya, India, earthquake: comparison of observations with synthetics using the composite source model. Bull Seismol Soc Am 85(1):31–50

    Google Scholar 

Download references

Acknowledgments

Our sincere thanks are given to the two anonymous reviewers of the paper for their thorough reviews and helpful feedback in restructuring the manuscript. We thank SCEC scientists and software group community for developing the BBP. S.N.S acknowledges the funding from DST-SERB ECR award SERB/F/2778/2016-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghucharan M. C. Research Scholar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. C., R., Somala, S.N. Simulation of strong ground motion for the 25 April 2015 Nepal (Gorkha) Mw 7.8 earthquake using the SCEC broadband platform. J Seismol 21, 777–808 (2017). https://doi.org/10.1007/s10950-016-9635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9635-z

Keywords

Navigation