Skip to main content
Log in

Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 thin film

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Based on a phenomenological model, the electrocaloric effects accompanied with the ferroelectric to paraelectric phase transition in relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 thin film were investigated. The model reproduces the essential features of the experimentally observed behavior and also gives a description of the electric field dependence of the electrocaloric effect. The simulated results reveal many intriguing features of electrocaloric effect including electrocaloric entropy changes, heat capacity changes and temperature changes as functions of temperature due to different electric fields shifts ΔE. A relative cooling power and refrigerant capacity due to applied electric field shift were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neese, B., Chu, B., Lu, S., Wang, Y., Furman, E., Zhang, Q.M.: Science 321, 821–823 (2008)

    Article  Google Scholar 

  2. Mischenko, A.S., Whatmore, R.W., Zhang, Q., Scott, J.F., Mathur, N.D.: Appl. Phys. Lett. 89, 242912 (2006)

    Article  Google Scholar 

  3. Hamad, M.A.: Appl. Phys. Lett. 100, 192908 (2012)

    Article  Google Scholar 

  4. Hamad, M.A.: Mater. Lett. 82, 181–183 (2012)

    Article  Google Scholar 

  5. Hamad, M.A.: Phase Transit. (2012). doi:10.1080/01411594.2012.674527

    Google Scholar 

  6. Hamad, M.A.: J. Therm. Anal. Calorim. (2012). doi:10.1007/s10973-012-2505-1

    Google Scholar 

  7. Ingale, B.D., Kuo, Y.K., Ram, S.: IEEE Trans. Magn. 47(10), 3395–3398 (2011)

    Article  Google Scholar 

  8. Candini, A., Moze, O., Kockelmann, W., Cadogan, J.M., Brück, E., Tegus, O.: J. Appl. Phys. 95, 6891 (2004)

    Article  Google Scholar 

  9. de Oliveira, N.A., von Ranke, P.J.: Phys. Rep. 489, 89 (2010)

    Article  Google Scholar 

  10. Wu, Y., Tegus, O., Zhang, W., Yiriyoltu, S., Mend, B., Songlin: Acta Metall. Sin. (Engl. Lett.) 22(5), 397–400 (2009)

    Article  Google Scholar 

  11. Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric Effect and Its Applications, 1st edn. Institute of Physics, Bristol (2003)

    Book  Google Scholar 

  12. Jing, C., Li, Z., Zhang, H.L., Chen, J.P., Qiao, Y.F., Cao, S.X., Zhang, J.C.: Eur. Phys. J. B 67(2), 193–196 (2009)

    Article  Google Scholar 

  13. Hamad, M.A.: Phase Transit. 85, 106–112 (2012)

    Article  Google Scholar 

  14. Cao, H.-X., Li, Z.-Y.: J. Appl. Phys. 106, 094104 (2009)

    Article  Google Scholar 

  15. Choi, S.W., Shrout, T.R., Jang, S.J., Bhalla, A.S.: Ferroelectrics 100, 29 (1989)

    Article  Google Scholar 

  16. Davis, M., Damjanovic, D., Setter, N.: J. Appl. Phys. 96, 2811 (2004)

    Article  Google Scholar 

  17. Whatmore, R.W., Osbond, P.C., Shorrocks, N.M.: Ferroelectrics 76, 351 (1987)

    Article  Google Scholar 

  18. Keogh, D., Chen, Z., Hughes, R.A., Dabkowski, A., Marinov, O., Maunders, C., Gunawan, L., Deen, M.J., Preston, J.S., Botton, G.A.: Appl. Phys. A 98, 187–194 (2010)

    Article  Google Scholar 

  19. Fitchorov, T., Yajie, C., Liping, J., Guangrui, Z., Zengqi, Z., Vittoria, C., Harris, V.G.: IEEE Trans. Magn. 47(10), 4050–4053 (2011)

    Article  Google Scholar 

  20. Yang, Y., Liu, Y.L., Ma, S.Y., Zhu, K., Zhang, L.Y., Cheng, J., Siu, G.G., Xu, Z.K., Luo, H.S.: Appl. Phys. Lett. 95, 051911 (2009)

    Article  Google Scholar 

  21. Correia, T.M., Young, J.S., Whatmore, R.W., Scott, J.F., Mathur, N.D., Zhang, Q.: Appl. Phys. Lett. 95, 182904 (2009)

    Article  Google Scholar 

  22. Zeng, M., Or, S.W., Chan, H.L.: Appl. Phys. Lett. 96, 182503 (2010)

    Article  Google Scholar 

  23. Rodriguez, B.J., Jesse, S., Morozovska, A.N., Svechnikov, S.V., Kiselev, D.A., Kholkin, A.L., Shvartsman, A.V.V., Kholkin, A.L.: J. Appl. Phys. 108, 042007 (2010)

    Article  Google Scholar 

  24. Bokov, A., Ye, Z.G., Kalinin, S.V.: J. Appl. Phys. 108, 042006 (2010)

    Article  Google Scholar 

  25. Ye, Z.-G., Noheda, B., Dong, M., Cox, D., Shirane, G.: Phys. Rev. B 64, 184114 (2001)

    Article  Google Scholar 

  26. Zekria, D., Shuvaeva, V.A., Glazer, A.M.: J. Phys. Condens. Matter 17, 1593 (2005)

    Article  Google Scholar 

  27. Hamad, M.A.: Phase Transit. 85, 159–168 (2012)

    Article  Google Scholar 

  28. Phan, M.H., Yu, S.C.: J. Magn. Magn. Mater. 308, 325 (2007)

    Article  Google Scholar 

  29. Wood, M.E., Potter, W.H.: Cryogenics 25, 667 (1985)

    Article  Google Scholar 

  30. Gorev, M.V., Flerov, I.N., Bondarev, V.S., Sciau, Ph.: J. Exp. Theor. Phys. 96, 531 (2003)

    Article  Google Scholar 

  31. Sato, Y., Kanai, H., Yamashita, Y.: J. Am. Ceram. Soc. 79, 261 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Aly Hamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamad, M.A. Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 thin film. J Comput Electron 11, 344–348 (2012). https://doi.org/10.1007/s10825-012-0414-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0414-y

Keywords

Navigation