Skip to main content
Log in

Crystal Structure, Magnetic and Electrical Properties of Half-Doped Chromium Manganite La0.5Sr0.5Mn0.5Cr0.5O3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Polycrystalline sample La0.5Sr0.5Mn0.5Cr0.5O3 (LSMCO) was prepared by a conventional solid-state reaction method in the air, and its structure was determined by Rietveld refinement using consistent resolution time-of-flight X-ray diffraction. Different structural models have been used for analysis of X-ray diffraction data recorded at room temperature, but the best fits have been found using a mixture of rhombohedral and an orthorhombic structural phases (42(1)%/57(1)%). The rhombohedral, centro-symmetric space group R\( \overline{3} \)c\( \left(\mathrm{No}.167,a\approx \sqrt{2}{a}_p,c\approx 2\sqrt{3}{a}_p,Z=6\right) \) with octahedral tilting scheme aaa leading to a three identical out-of-phase tilt angle of (Mn/Cr)-O6 octahedron along three perovskite main directions: x, y, and z-axes. The orthorhombic space group Pbnm\( \left(\mathrm{No}.62,a\approx b\approx \sqrt{2}{a}_p,c\approx 2{a}_p,Z=4\right) \) with octahedral tilting scheme aac+, leads to an anti-phase tilts of the same magnitude about [100] and [010] directions of the elementary specimen cell and in-phase tilt of different magnitude about the [001] direction. At low temperature 10 K, Rietveld refinement of powder diffraction data revealed that the crystal structure of sample is distorted with a single orthorhombic symmetry (space group Pbnm). Magnetic measurements indicate that our investigated sample exhibits an overall anti-ferromagnetic behavior mainly attributed to the frustration induced by both competing AFM Cr3+-O-Cr3+, Mn4+-O-Mn4+ networks, and the mixed one Mn4+-O-Cr3+exchange magnetic interactions. The temperature dependence of the resistivity measured under zero field shows a semi-conducting behavior in the whole temperature range, which probably could be described by the adiabatic small polaron hoping model with relatively high polaron activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cowin, P.I., Petit, C.T.G., Lan, R., Irvine, J.T.S., Tao, S.: Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells. Adv. Energy Mater. 1, 314–332 (2011)

    Article  Google Scholar 

  2. Armstrong, T.J., Virkar, A.V.: J. Electrochem. Soc. 149, 1565 (2002)

    Article  Google Scholar 

  3. Salje, E., Zhang, H.: Domain boundary engineering. Phase Transit. 82, 452–469 (2009)

    Article  Google Scholar 

  4. Vanitha, P.V., Arulraj, A., Raju, A.R., Rao, C.N.R.: C. R. Acad. Sci., Ser. IIc: Chim. 2, 595 (1999)

    Google Scholar 

  5. Maignan, A., Martin, C., Hervieu, M., Raveau, B.: Ferromagnetism and metallicity in the CaMn1−xRuxO3 perovskites: a highly inhomogeneous system. Solid State Commun. 117, 377–382 (2001)

    Article  ADS  Google Scholar 

  6. Martin, C., Maignan, A., Hervieu, M., Autret, C., Raveau, B., Khomskii, D.I.: Phys. Rev. B. 63, 174402 (2001)

    Article  ADS  Google Scholar 

  7. Sharma, H., Kumar, D., Tulapurkar, A., Tomy, C.V.: Effect of B-site bismuth doping on magnetic and transport properties of La0.5Ca0.5Mn1−xBixO3 thin films. J. Mater. Sci. 54, 130–138 (2019)

    Article  ADS  Google Scholar 

  8. Teng, F., Han, W., Liang, S., Gaugeu, B., Zong, R., Zhu, Y.: Catalytic behavior of hydrothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of CO and CH4. J. Catal. 250, 1–11 (2007)

    Article  Google Scholar 

  9. Shi, L., Yang, H., Zhou, S., Zhao, J., He, L., Zhao, S., Guo, Y., Chen, L.: Influence of annealing atmosphere on the properties of La0.5Sr0.5MnO3. Solid State Commun. 150, 371–374 (2010)

    Article  ADS  Google Scholar 

  10. Shanga, C., Xiaa, Z.C., Weia, M., Chena, B.R., Jina, Z., Huanga, J.W., Shia, L.R., Ouyang, Z.W., Huang, S.: Dynamical behavior of step-like transition of La0.5Sr0.5Mn1−xTixO3 in a widened field sweep rate. Ceram. Int. 41, 9708–9714 (2015)

    Article  Google Scholar 

  11. Taran, S., Sun, C.P., Huang, C.L., Yang, H.D., Nigam, A.K., Chaudhuri, B.K., Chatterjee, S.: Electrical and magnetic properties of Y-doped La 0.5 Sr 0.5 MnO 3 manganite system: Observation of step-like magnetization. J. Alloys Compd. 644, 363–370 (2015)

    Article  Google Scholar 

  12. Phan, T.-L., Thanh, T.D., Yu, S.C.: Influence of Co doping on the critical behavior of La0.7Sr0.3Mn1−xCoxO3. J. Alloys Compd. 615, S247–S251 (2014)

    Article  Google Scholar 

  13. Millagne, F., de Brion, S., Choteau, G.: Phys. Rev. B. 62, 5619 (2000)

    Article  ADS  Google Scholar 

  14. Kimura, T., Tomioka, Y., Kumai, R., Okimoto, Y., Tokura, Y.: Diffuse Phase Transition and Phase Separation in Cr-DopedNd1/2Ca1/2MnO3: A Relaxor Ferromagnet. Phys. Rev. Lett. 83, 3940–3943 (1999)

    Article  ADS  Google Scholar 

  15. J. Rodriguez-Carvajal, FULLPROF 2000–2005, Laboratoire Leon Briouillon (CEA- CNRS)

  16. D. Palmer, Crystal-Maker Software Version 2. 7. 7, Crystal-Maker Software Ltd. (2013)

  17. Lufaso, M.W., Woodward, P.M.: Prediction of the crystal structures of perovskites using the software programSPuDS. Acta Cryst. B. 57, 725–738 (2001)

    Article  Google Scholar 

  18. Rao, G.H., Bärner, K., Brown, I.D.: Bond-valence analysis on the structural effects in magnetoresistive manganese perovskites. J. Phys. Condens. Matter. 10, L757–L763 (1998)

    Article  ADS  Google Scholar 

  19. Battle, P.D., Jones Mat, C.W.: The crystal structure of La 2 NiRuO 6. Res. Bull. 22, 1623–1627 (1987)

    Article  Google Scholar 

  20. Woodward, P.M., Vogt, T., Cox, D.E., Arulraj, A., Rao, C.N.R., Karen, P., Cheetham, A.K.: Influence of Cation Size on the Structural Features of Ln1/2A1/2MnO3Perovskites at Room Temperature. Chem. Mater. 10, 3652–3665 (1998)

    Article  Google Scholar 

  21. Ihzaz, N., Boudard, M., Vincent, H., Oumezzine, M.: Magnetic structure in the segregated phases Nd0.93MnO2.96. J. Alloys Compd. 479(1), 445–450 (2009)

    Article  Google Scholar 

  22. Roth, R.S.: J. Res. Natl. Bur. Stand. 58(2), 75–88 (1957)

    Article  Google Scholar 

  23. Ganesh Bera, V.R., Reddy, P., Rambabu, P.M., Das, P., Mohapatra, N., Padmaja, G., Turpu, G.R.: Triclinic–monoclinic–orthorhombic (T–M–O) structural transitions in phase diagram of FeVO4-CrVO4solid solutions. J. Appl. Phys. 122, 115101 (2017)

    Article  ADS  Google Scholar 

  24. Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Crystallogr. B. 28, 3384–3392 (1972)

    Article  Google Scholar 

  25. Glazer, A.M.: Acta Crystallogr. A. 31, 756 (1975)

    Article  ADS  Google Scholar 

  26. Alonso, J.A., Martinez-Lope, M.J., Casais, M.T., Aranda, M.A.G., Fernandez-Diaz, M.T.: Metal−Insulator Transitions, Structural and Microstructural Evolution of RNiO3(R = Sm, Eu, Gd, Dy, Ho, Y) Perovskites: Evidence for Room-Temperature Charge Disproportionation in Monoclinic HoNiO3and YNiO3. J. Am. Chem. Soc. 121, 4754–4762 (1999)

    Article  Google Scholar 

  27. Fuertes, V.C., Blanco, M.C., Franco, D.G., Ceppi, S., Sánchez, R.D., Fernández-Díaz, M.T., Tirao, G., Carbonio, R.E.: A new LaCo0.71(1)V0.29(1)O2.97(3)perovskite containing vanadium in octahedral sites: synthesis and structural and magnetic characterization. Dalton Trans. 44, 10721–10727 (2015)

    Article  Google Scholar 

  28. Duran, A., Escamilla, R., Escudero, R., Morales, F., Verdin, E.: Phys. Rev. Mater. 2, 014409 (2018)

    Article  Google Scholar 

  29. Sun, Y., Xu, X., Zhang, Y.: Phys. Rev. B. 63, 054404 (2000)

    Article  ADS  Google Scholar 

  30. Troyanchuk, I.O., Bushinsky, M.V., Eremenko, V.V., Sirenko, V.A., Szymczak, H.: Low Temp. Phys. 28, 45 (1999)

    Article  ADS  Google Scholar 

  31. Rivadulla, F., López-Quintela, M.A., Hueso, L.E., Sande, P., Rivas, J., Sánchez, R.D.: Effect of Mn-site doping on the magnetotransport properties of the colossal magnetoresistance compoundLa2/3Ca1/3Mn1−xAxO3(A=Co,Cr;x<~0.1). Phys. Rev. B. 62, 5678–5684 (2000)

    Article  ADS  Google Scholar 

  32. Xiao, X., Yuan, S., Miao, J., Ren, G., Yu, G., Wang, Y., Yin, S.: Tuning colossal magnetoresistance response at roomtemperature by La2/3+ySr1/3−yMn1−yCryO3. Mater. Lett. 61, 2315–2318 (2007)

    Article  Google Scholar 

  33. Cabeza, O., Long, M., Severack, C., Bari, M.A., Muirhead, C.M., Francesconi, M.G., Greaves, C.: Magnetization and resistivity in chromium doped manganites. J. Phys. Condens. Matter. 11, 2569–2578 (1999)

    Article  ADS  Google Scholar 

  34. Troyanchuk, I.O., Bushinsky, M.V., Eremenko, V.V., Sirenko, V.A., Szymczak, H.: Magnetic phase diagram of the system of manganites Nd0.6Ca0.4(Mn1−xCrx)O3. Low Temp. Phys. 28, 45–48 (2002)

    Article  ADS  Google Scholar 

  35. Zvezdin, A.K., Matveev, V.M., Mukhin, A.A., Popov, A.I.: Rare-Earth Ions in Magnetically Ordered Crystals [in Russian], p. 296. GFML, Moscow (1985)

    Google Scholar 

  36. Kimura, T., Kumai, R., Okimoto, Y., Tomioka, Y., Tokura, Y.: Variation of charge-orbital correlation with Cr doping in manganites. Phys. Rev. B. 62, 15021–15025 (2000)

    Article  ADS  Google Scholar 

  37. Pi, L., Hébert, S., Yaicle, C., Martin, C., Maignan, A., Raveau, B.: The Pr0.5Ca0.5Mn1 xCrxO3series (0 x 0.5): evidence of steps in the magnetic and transport properties for a narrow composition range. J. Phys. Condens. Matter. 15, 2701–2709 (2003)

    Article  ADS  Google Scholar 

  38. Moreo, A., Yunoki, S., Dagotto, E.: Phase Separation Scenario for Manganese Oxides and Related Materials. Science. 283, 2034–2040 (1999)

    Article  Google Scholar 

  39. Sun, Y., Tong, W., Xu, X., Zhang, Y.: Phys. Rev. B. 63, 174438 (2001)

    Article  ADS  Google Scholar 

  40. Fonseca, F.C., Carneio, A.S., Jardim, R.F., O’Brein, J.R., Kimura, T.: J. Appl. Phys. 95, 7085 (2004)

    Article  ADS  Google Scholar 

  41. Hazzez, M., Ihzaz, N., Boudard, M., Oumezzine, M.: The structural, magnetic and above room temperature magnetocaloric properties of La0.5Sr0.5MnO3 compound. Eur. Phys. J. Plus. 130, 179 (2015)

    Article  Google Scholar 

  42. Kallel, N., Ihzaz, N., Kallel, S., Hagaza, A., Oumezzine, M.: Research on charge-ordering state in La0.5Sr0.5MnO2.88 and La0.5Sr0.5Mn0.5Ti0.5O3 systems. J. Magn. Magn. Mater. 321, 2285–2289 (2009)

    Article  ADS  Google Scholar 

  43. Hagaza, A., Kallel, N., Kallel, S., Guizouarn, T., Pena, O., Oumezzine, M.: Structural, magnetic and electrical properties of (La0.70−xNdx)Sr0.30Mn0.70Cr0.30O3 with 0≤x≤0.30. J. Alloys Compd. 486, 250–256 (2009)

    Article  Google Scholar 

  44. Ben Abdelkhalek, S., Kallel, N., Kallel, S., Guizouarn, T., Pena, O., Oumezzine, M.: Effect of the simultaneous substitution of two transition metals on the structural, magnetic and electrical properties of La0.6Sr0.4Mn1−2xCrxFexO3. J. Magn. Magn. Mater. 322, 3416–3422 (2010)

    Article  ADS  Google Scholar 

  45. Singh, S., Singh, D.: Sol–gel synthesis of La0.5Sr0.5Ti0.5Cr0.5–x Fe x O3 perovskites: influence of Fe doping on structural and physical properties. Ionics. 24, 769–776 (2018)

    Article  Google Scholar 

  46. Singh, D., Mahajan, A.: Investigation of structural, magnetic and electric transport properties of half-doped chromium manganites La0.3R0.2Sr0.5Mn0.5Cr0.5O3 (R=La, Nd, Sm, and Gd). Ceram. Int. 41, 11748–11755 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Kallel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallel, N., Hazzez, M. & Ihzaz, N. Crystal Structure, Magnetic and Electrical Properties of Half-Doped Chromium Manganite La0.5Sr0.5Mn0.5Cr0.5O3. J Supercond Nov Magn 32, 2623–2631 (2019). https://doi.org/10.1007/s10948-019-4997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-4997-4

Keywords

Navigation