Skip to main content
Log in

Investigation of structural and some physical properties of Cr substituted polycrystalline Eu0.5Sr0.5Mn1−xCrxO3 (0 ≤ x ≤ 0.1) manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline samples with nominal composition Eu0.5Sr0.5Mn1−x Cr x O3 (0 ≤ x ≤ 0.1) were prepared by the conventional solid state reaction method and characterized by X-ray diffraction, scanning electron microscopy and electrical resistivity behavior without and with magnetic field. The structural parameters obtained by using Rietveld refinement of X-ray diffraction data showed that all samples crystallize with orthorhombic perovskite type symmetry with Pbnm space group. The scanning electron micrograph images reveal that the increase in Cr substitution hinders grain growth and grain connectivity. The temperature dependence of electrical resistivity show the semiconducting nature of these compounds and support the small polaron hoping model and variable range hopping conduction model. The calculated hopping distance and activation energy decreased as rate of Cr content increased whereas density of states at Fermi level increased. A large negative magnetoresistance is also present in the sample at the lowest temperature of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Jin, T.H. Tiefel, M. Mc Cormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 254, 413 (1994)

    Article  Google Scholar 

  2. Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, D. Feng, Phys. Rev. Lett. 78, 1142 (1997)

    Article  Google Scholar 

  3. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51, 14103 (1995)

    Article  Google Scholar 

  4. T.S. Orlova, J.Y. Laval, P. Monod, P. Bassoul, J.G. Noudem, E.V. Orlenko, Phys. Rev. B 79, 134407 (2009)

    Article  Google Scholar 

  5. R. Bellouz, M. Oumezzine, A. Dinia, G. Schmerber, E.L.K. Hlil, M. Oumezzine, RSC Adv. 5, 64557 (2015)

    Article  Google Scholar 

  6. Y. Sun, W. Tong, X. Xu, Y. Zhang, Phys. Rev. B 63, 174438 (2001)

    Article  Google Scholar 

  7. C. Zener, Phys. Rev. B 82, 403 (1951)

    Article  Google Scholar 

  8. A.J. Millis, Phys. Rev. B 53, 8434 (1996)

    Article  Google Scholar 

  9. P.K. Siwach, H.K. Singh, O.N. Srivastava, J. Phys, Condens. Matter 20, 273201 (2008)

    Article  Google Scholar 

  10. M.A. Bhat, A. Modi, N.K. Gaur, J. Mater. Sci. Mater. Electron. 26, 6444 (2015)

    Article  Google Scholar 

  11. C. Autret, A. Maigna, C. Martin, M. Hervieu, V. Hardy, S. Hebert, B. Reveau, Appl. Phys. Lett. 82, 4746 (2003)

    Article  Google Scholar 

  12. R.J. Goff, J.P. Attfield, Phys. Rev. B 70, 140404(R) (2004)

    Article  Google Scholar 

  13. S. Mori, R. Shoji, N. Yamamoto, T. Asaka, Y. Matsui, A. Machida, Y. Moritomo, T. Katsufuji, Phys. Rev. B 67, 012403 (2003)

    Article  Google Scholar 

  14. S. Cao, W. Li, J. Zhang, B. Kang, T. Gao, C. Jing, J. Appl. Phys. 102, 053909 (2007)

    Article  Google Scholar 

  15. Y. Tomioka, R. Kumai, T. Ito, Y. Tokura, Phys. Rev. B 80, 174414 (2009)

    Article  Google Scholar 

  16. P. Dutta, D. Das, S. Chatterjee, S. Majumdar, J. Alloys Compd. 590, 313 (2014)

    Article  Google Scholar 

  17. N. Kumar, H. Kishan, Ashok Rao, V.P.S. Awana, J. Appl. Phys. 107, 083905 (2010)

    Article  Google Scholar 

  18. F.C. Fonseca, A.S. Carneiro, R.F. Jardim, J.R. O’Brien, T. Kimura, J. Appl. Phys. 95, 7085 (2004)

    Article  Google Scholar 

  19. A. Modi, N.K. Gaur, J. Alloys Compd. 644, 575 (2015)

    Article  Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  21. D.-Q. Liao, Y. Sun, R.-F. Yang, Z.-H. Cheng, Phys. B 394, 104 (2007)

    Article  Google Scholar 

  22. J.M.D. Cowy, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999)

    Article  Google Scholar 

  23. W. Khan, A.H. Naqvi, M. Gupta, S. Husain, R. Kumar, J. Chem. Phys. 135, 054501 (2011)

    Article  Google Scholar 

  24. S.K. Srivastava, S. Ravi, J. Super. Nov. Magn. 22, 651658 (2009)

    Google Scholar 

  25. W.H. Jung, J. Mater. Sci. Lett. 17, 1317 (1998)

    Article  Google Scholar 

  26. M.W. Shaikh, I. Mansuri, M.A. Dar, D. Varshney, Mat. Sci. Semicon. Proc. 35, 10 (2015)

    Article  Google Scholar 

  27. A.S. Alexandrov, B.Y. Yavidov, Phys. Rev. B 69, 073101 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grant Commission (UGC), New Delhi for providing the financial support. Authors are thankful to UGC-DAE CSR, Indore for providing characterization facilities. Authors are gratefully acknowledged Dr. Rajeev Rawat and Dr. Mukul Gupta for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchit Modi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, A., Bhat, M.A., Bhattacharya, S. et al. Investigation of structural and some physical properties of Cr substituted polycrystalline Eu0.5Sr0.5Mn1−xCrxO3 (0 ≤ x ≤ 0.1) manganites. J Mater Sci: Mater Electron 27, 8899–8905 (2016). https://doi.org/10.1007/s10854-016-4916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4916-4

Keywords

Navigation