Skip to main content
Log in

Spin State of Cobalt and Electrical Transport Mechanism in MgCo2O4 System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

A Correction to this article was published on 22 November 2018

This article has been updated

Abstract

MgCo2O4 samples were synthesized by inverse co-precipitation method. The formation of a single-phase spinel structure was confirmed by X-ray diffraction measurements and Fourier-transform infrared spectroscopy. The samples crystallized in a face-centered cubic structure with Fd-3m space group as revealed from the Rietveld refinement of X-ray diffraction data. Magnetic measurements carried out in a broad temperature range of 5–300 K showed antiferromagnetic to paramagnetic phase transition (Neel temperature) observed at 101 K. Magnetic susceptibility data fitted using the Curie Weiss law and effective Bohr magnetic moment (μeff) for Co atoms was determined. Calculated μeff comes out to be 3.05 μB. These results were correlated to the spin states of Co3+ atoms. A small hysteresis in the field-dependent magnetization MH loop taken at 5 K indicates the existence of weak ferromagnetism in this system. The electrical resistivity measurement in the temperature range 77–750 K displayed the semiconducting-like behavior for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 22 November 2018

    Some corrections are needed in original article.

  • 22 November 2018

    Some corrections are needed in original article.

  • 22 November 2018

    Some corrections are needed in original article.

References

  1. Che, X., Li, L., Li, G.: Exploration of spin state and exchange integral of cobalt ions in stoichiometric ZnCo2O4 spinel oxides. Appl. Phys. Lett. 108, 143102 (2016)

    Article  ADS  Google Scholar 

  2. Gu, D., Jia, C.-J., Weidenthaler, C., Bongard, H.-J., Spliethoff, B., Schmidt, W., Schuth, F.: Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 137, 11407 (2015)

    Article  Google Scholar 

  3. Wang, G., Meng, Y., Wang, L., Xia, J., Zhu, F., Zhang, Y.: Yolk-shell Co3O4-CoO/carbon composites for lithium-ion batteries with enhanced electrochemical properties. Int. J. Electrochem. Sci. 12, 2618 (2017)

    Article  Google Scholar 

  4. Vetter, S., Haffer, S., Wagner, T., Tiemann, M.: Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior. Sens. Actuator B-Chem. 206, 133 (2015)

    Article  Google Scholar 

  5. Blakemore, J.D., Gray, H.B., Winkler, J.R., Muller, A.M.: Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3, 2497 (2013)

    Article  Google Scholar 

  6. Farhadi, S., Safabakhsh, J., Zaringhadam, P.: Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanostructure Chem. 3, 69 (2013)

    Article  Google Scholar 

  7. Roth, W.L.: The magnetic structure of Co3O4. J. Phys. Chem. Solids 25, 1 (1964)

    Article  ADS  Google Scholar 

  8. Chen, W., Chen, C., Guo, L.: Field-dependent low-field enhancement in effective paramagnetic moment with nanoscaled Co3O4. J. Appl. Phys. 108, 073907 (2010)

    Article  ADS  Google Scholar 

  9. Ravi, G.: Magnetic evolution in transition metal-doped Co3−xMxO4 (M = Ni, Fe, Mg and Zn) nanostructures. Appl. Phys. A 122, 177 (2016)

    ADS  Google Scholar 

  10. Ghione, E., Mescia, D., Fino, D., Russo, N., Saracco, G., Specchia, V.: Design of catalyst for the decomposition of N2O(2006)

  11. Sharma, Y., Sharma, N., Subba Rao, G.V., Chowdari, B.V.R.: Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ion. 179, 587 (2008)

    Article  Google Scholar 

  12. Krishnan, S.G., Reddy, M.V., Harilal, M., Vidyadharan, B., Misnon, I.I., Ab Rahim, M.H., Ismail, J., Jose, R.: Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 161, 312 (2015)

    Article  Google Scholar 

  13. Yagi, S., Ichikawa, Y., Yamada, I., Doi, T., Ichitsubo, T., Matsubara, E.: Synthesis of binary magnesium–transition metal oxides via inverse coprecipitation. Jpn. J. Appl. Phys. 52, 025501 (2013)

    Article  ADS  Google Scholar 

  14. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  15. Young, R.A.: The Rietveld Method. Oxford University Press, London (1996)

    Google Scholar 

  16. Gene, S.A., Saion, E., Shaari, A.H., Kamarudin, M.A., Al-Hada, N.M., Kharazmi, A.: Structural, optical, and magnetic characterization of spinel zinc chromite nanocrystallines synthesised by thermal treatment method. J. Nanomater. 2014, 7 (2014). Article ID 416765

    Article  Google Scholar 

  17. Kumar, L., Kumar, P., Narayan, A., Kar, M.: Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3, 8 (2013)

    Article  Google Scholar 

  18. Krezhov, K., Konstantinov, P.: On the cationic distribution in MgxCo3−xO4 spinels. J. Phys.: Condens. Matter 4, L543 (1992)

    ADS  Google Scholar 

  19. Sun, D., Wang, M.X., Zhang, Z.H., Tao, H.L., He, M., Song, B., Li, Q.: Effects of inverse degree on electronic structure and electron energy-loss spectrum in zinc ferrites. Solid State Commun. 223, 12 (2015)

    Article  ADS  Google Scholar 

  20. Kamioka, N., Ichitsubo, T., Uda, T., Imashuku, S., Taninouchi, Y.-k., Matsubara, E.: Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater. Trans. JIM 49, 824 (2008)

    Article  Google Scholar 

  21. Sattar, A., El-Sayed, H., El-Shokrofy, K., El-Tabey, M.: Improvement of the magnetic properties of Mn-Ni-Zn ferrite by the non magnetic Al-ion substitution. J. Applied Sci 3, 162 (2005)

    Google Scholar 

  22. Prasad, R., Singh, P.: Low temperature complete combustion of a lean mixture of LPG emissions over cobaltite catalysts. Catal. Sci. Tech. 3, 3223 (2013)

    Article  Google Scholar 

  23. Tseng, C.-C., Lee, J.-L., Liu, Y.-M., Ger, M.-D., Shu, Y.-Y.: Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors. J. Taiwan Inst. Chem. Eng. 44(3), 415–419 (2013)

    Article  Google Scholar 

  24. Deraz, N., Abd-Elkader, O.H.: Investigation of magnesium ferrite spinel solid solution with iron-rich composition. Int. J. Electrochem. Sci 8, 9071 (2013)

    Google Scholar 

  25. Ashiq, M.N., Ehsan, M.F., Iqbal, M.J., Gul, I.H.: Synthesis, structural and electrical characterization of Sb3+ substituted spinel nickel ferrite (NiSbxFe2−xO4) nanoparticles by reverse micelle technique. J. Alloys Compd. 509, 5119 (2011)

    Article  Google Scholar 

  26. Aravind, G., Raghasudha, M., Ravinder, D.: Electrical transport properties of nano crystalline Li–Ni ferrites. J. Materiomics 1, 348 (2015)

    Article  Google Scholar 

  27. Richter, C., van der Pluijm, B.A.: Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Phys. Earth Planet. Inter. 82, 113 (1994)

    Article  ADS  Google Scholar 

  28. Durán, A., Arévalo-López, A.M., Castillo-Martínez, E., García-Guaderrama, M., Moran, E., Cruz, M.P., Fernández, F., Alario-Franco, M.A.: Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis. J. Solid State Chem. 183, 1863 (2010)

    Article  ADS  Google Scholar 

  29. Guillou, F., Bréard, Y., Hardy, V.: Cobalt spin state above the valence and spin-state transition in (Pr0.7 Sm0.3)0.7 Ca0.3 CoO3. Solid State Sci. 24, 120 (2013)

    Article  ADS  Google Scholar 

  30. Raghavender, A.T., Hong, N.H., Lee, K.J., Jung, M.-H., Skoko, Z., Vasilevskiy, M., Cerqueira, M.F., Samantilleke, A.P.: Nano-ilmenite FeTiO3: synthesis and characterization. J. Magn. Magn. Mater. 331, 129 (2013)

    Article  ADS  Google Scholar 

  31. Zhu, W., Wang, M., Seradjeh, B., Yang, F., Zhang, S.: Enhanced weak ferromagnetism and conductivity in hole-doped pyrochlore iridate Y2Ir2O7. Phys. Rev. B 90, 054419 (2014)

    Article  ADS  Google Scholar 

  32. Vasundhara, K., Achary, S.N., Deshpande, S.K., Babu, P.D., Meena, S.S., Tyagi, A.K.: Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 113, 194101 (2013)

    Article  ADS  Google Scholar 

  33. Bhat, M.A., Zargar, R., Modi, A., Arora, M., Gaur, N.K.: Structural, electrical and magnetic features of Kagomé, YBaCo4O7 system. Mater. Sci-Poland 34, 786 (2016)

    Article  Google Scholar 

  34. Retuerto, M., Li, M.-R., Stephens, P.W., Sánchez-Benítez, J., Deng, X., Kotliar, G., Croft, M.C., Ignatov, A., Walker, D., Greenblatt, M.: Half-metallicity in Pb2CoReO6 double perovskite and high magnetic ordering temperature in Pb2CrReO6 perovskite. Chem. Mater. 27, 4450 (2015)

    Article  Google Scholar 

  35. Zhao, H., Cao, L., Song, Y., Feng, S., Shen, X., Ni, X., Yao, Y., Wang, Y., Jin, C., Yu, R.: Structure, magnetic and electrical properties of disordered double perovskite Pb2CrMoO6. Solid State Commun. 204, 1 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arooj Fatima Syeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syeda, A.F., Khan, M.N. Spin State of Cobalt and Electrical Transport Mechanism in MgCo2O4 System. J Supercond Nov Magn 31, 3545–3551 (2018). https://doi.org/10.1007/s10948-018-4598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4598-7

Keywords

Navigation