Skip to main content
Log in

Mechanism of Enhanced Carbon Substitution in CNT-MgB2 Superconductor Composite Using Ball Milling in a Methanol Medium: Positive Role of Boron Oxide

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, we report on the role of the methanol medium and ball-milling time in the substitution of carbon in carbon nanotube CNT-MgB2 superconductors. In our samples, we find that the CNTs are intact and well dispersed. However, the liquid medium (methanol) used for dispersion of the constituent materials is also acting as a source of C for substitution. However, the substitution of C from methanol is not direct; rather, B2O3, which had been considered as just an impurity, plays a positive role in binding the methanol molecules to the surface of B. The detailed mechanism of methanol absorption and the role of B2O3 and ball-milling time are presented here. In addition, we present the J C(H, T) data, which show that approximately 3% of C substitution provides the best critical current density at 20 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nagamatsu, J., et al.: Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Dou, S.X., et al.: Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SIC doping. Appl. Phys. Lett. 81(18), 3419–3421 (2002)

    Article  ADS  Google Scholar 

  3. Kim, J.H., et al.: The doping effect of multiwall carbon nanotube on MgB2/Fe superconductor wire. J Appl. Phys., 2006. 100(1)

  4. Wilke, R.H.T., et al.: Systematic effects of carbon doping on the superconducting properties of Mg(B1−xCx)2. Phys. Rev. Lett. 92(21), 217003 (2004)

    Article  ADS  Google Scholar 

  5. Ma, Y.W., et al.: Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route. Appl. Phys. Lett., 2006. 88(7)

  6. Susner, M.A., et al.: Influence of Mg/B ratio and SiC doping on microstructure and high field transport J(c) in MgB2 strands. Phys. C-Superconductivity Appl. 456(1-2), 180–187 (2007)

    Article  ADS  Google Scholar 

  7. Collings, E.W., et al.: Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands. Superconductor Sci. Technol., 2008. 21(10)

  8. Ye, S.J., et al.: Comparison of SiC and/or toluene additives to the critical current density of internal Mg diffusion-processed MgB2 wires. Phys. C-Superconductivity Appl. 484, 167–170 (2013)

    Article  ADS  Google Scholar 

  9. Yamamoto, A., et al.: Reactivity of carbides in synthesis of MgB2 bulks. Phys. C-Superconductivity Appl. 445, 801–805 (2006)

    Article  ADS  Google Scholar 

  10. Yamamoto, A., et al.: Effects of B4C doping on critical current properties of MgB2 superconductor. Supercond. Sci. Technol. 18(10), 1323–1328 (2005)

    Article  ADS  Google Scholar 

  11. Dou, S.X., et al.: Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC doping. Phys. Rev. Lett., 2007. 98(9)

  12. Yeoh, W.K., et al.: Effect of carbon substitution on the superconducting properties of MgB2 doped with multi-walled carbon nanotubes and nano carbon. IEEE Trans. Appl. Supercond. 17(2), 2929–2932 (2007)

    Article  ADS  Google Scholar 

  13. Cheng, C.H., et al.: Doping effect of nano-diamond on superconductivity and flux pinning in MgB2. Supercond. Sci. Technol. 16(10), 1182–1186 (2003)

    Article  ADS  Google Scholar 

  14. Dou, S.X., et al.: Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Appl. Phys. Lett. 83(24), 4996–4998 (2003)

    Article  ADS  Google Scholar 

  15. Serquis, A., et al.: Correlated enhancement of H-c2 and J(c) in carbon nanotube doped MgB2. Supercond. Sci. Technol. 20(4), L12–L15 (2007)

    Article  Google Scholar 

  16. Shekhar, C., et al.: Improved critical current density of MgB2-carbon nanotubes composite. J. Nanosci. Nanotechnol. 7(6), 1804–1809 (2007)

    Article  MathSciNet  Google Scholar 

  17. Patel, D., et al.: Multiwalled carbon nanotube-derived superior electrical, mechanical and thermal properties in MgB2 wires. Scr. Mater. 88, 13–16 (2014)

    Article  Google Scholar 

  18. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)

    Article  ADS  Google Scholar 

  19. Yeoh, W.K., et al.: Improving flux pinning of MgB2 by carbon nanotube doping and ultrasonication. Supercond. Sci. Technol. 19(2), L5–L8 (2006)

    Article  Google Scholar 

  20. Lekawa-Raus, A., et al.: Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24(24), 3661–3682 (2014)

    Article  Google Scholar 

  21. Singh, K.P., et al.: Phase formation and superconductivity of fe-TUBE encapsulated and vacuum-annealed MgB2. Modern Phys. Lett. B 20(27), 1763–1769 (2006)

    Article  ADS  Google Scholar 

  22. Parakkandy, J.M., et al.: Effect of ball milling time on critical current density of glucose-doped MgB2 superconductors. J. Supercond. Nov. Magn. 28(2), 475–479 (2015)

    Article  Google Scholar 

  23. Xu, X., et al.: Improved J(c) of MgB2 superconductor by ball milling using different media. Supercond. Sci. Technol. 19(11), L47–L50 (2006)

    Article  Google Scholar 

  24. Wei, J.Q., et al.: Structure and superconductivity of MgB2-carbon nanotube composites. Mater. Chem. Phys. 78(3), 785–790 (2003)

    Article  Google Scholar 

  25. Dong, C.: Powderx: Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Crystallogr. 32(4), 838 (1999)

    Article  Google Scholar 

  26. Lutterotti, L.: Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B 268(3–4), 334–340 (2010)

    Article  ADS  Google Scholar 

  27. Lutterotti, L., et al.: Texture, residual stress and structural analysis of thin films using a combined X-rayx analysis. Thin Solid Films 450(1), 34–41 (2004)

    Article  ADS  Google Scholar 

  28. Avdeev, M., et al.: Crystal chemistry of carbon-substituted MgB2. Phys. C-Superconductivity Appl. 387 (3-4), 301–306 (2003)

    Article  ADS  Google Scholar 

  29. Jun, B.H., Park, S.D., Kim, C.J.: Refinement and carbon incorporation effects on the superconducting properties of MgB2 through wet milling process of low purity boron powder. J. Alloys Compd. 535, 27–32 (2012)

    Article  Google Scholar 

  30. Low, M.J.D., Harano, Y.: An infrared study of the reaction of methanol with siliceous surfaces. J. Res. Institute for Catalysis, Hokkaido University 16(1), 271–286 (1968)

    Google Scholar 

  31. Low, M.J.D., Harano, Y.: An infrared study of the reaction of methanol with siliceous surfaces. J. Res. Institute for Catalysis, Hokkaido University 16(1), 271–286 (1968)

    Google Scholar 

  32. Low, M.J.D., Harano, Y.: An infrared study of the reaction of methanol with siliceous surfaces. J. Res. Institute for Catalysis, Hokkaido University 16(1), 271–286 (1968)

    Google Scholar 

  33. Rowell, J.: The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 16(6), R17–R27 (2003)

    Article  ADS  Google Scholar 

  34. Lee, S., et al.: Carbon-substituted MgB2 single crystals. Phys. C-Superconductivity Appl. 397(1-2), 7–13 (2003)

    Article  ADS  Google Scholar 

  35. Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36(1), 31–39 (1964)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahabuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, F.S., Shahabuddin, M., Alzayed, N.S. et al. Mechanism of Enhanced Carbon Substitution in CNT-MgB2 Superconductor Composite Using Ball Milling in a Methanol Medium: Positive Role of Boron Oxide. J Supercond Nov Magn 31, 1119–1126 (2018). https://doi.org/10.1007/s10948-017-4279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4279-y

Keywords

Navigation