Skip to main content
Log in

Enhancement of synthesis efficiency and critical current density in glycine-doped MgB2 bulks by two-step sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glycine (Gly)-doped and Cu-and-Gly-co-doped MgB2 samples were two-step synthesized by a short 800 °C period followed by sintering at 600 °C for 2 h. In view of the depression of oxidation and the significant reduction of the synthesis time, the sintering efficiency was improved due to the instantaneous high-temperature process, in contrast with the one-step sintered samples at 800 °C. The critical current density was examined to be 5.1 × 103 and 8.4 × 103 A cm− 2 at 20 K and 3 T for the Gly-doped and the co-doped samples, respectively. Such enhancement, with respect to the one-step sintered un-doped sample, is attributed to the fine MgO (~20 nm) and Mg2Cu (~10 nm) pinning centers. The MgO and Mg2Cu in the co-doped sample precipitated at the grain boundary and within the grains, respectively. Besides, the residual Mg phase in the Gly-doped sample remained on the surface of the MgB2 grains, which proved the screw-dislocation growth of the MgB2 grains, i.e. the grains extended from inner center to outer zone at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentani, J. Akimitsu, Nature 410, 63–64 (2001)

    Article  Google Scholar 

  2. D. Patel, M.S.A. Hossain, A. Motaman, S. Barua, M. Shahabuddin, J.H. Kim, Cryogenics 63, 160–165 (2014)

    Article  Google Scholar 

  3. N.K. Saritekin, M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci. Mater. El. 25 (2014) 3127–3136.

    Article  Google Scholar 

  4. J.H. Kim, S. Oh, Y.U. Heo, S. Hata, H. Kumakura, A. Matsumoto, M. Mitsuhara, S. Choi, Y. Shimada, M. Maeda, J.L. MacManus-Driscoll, S.X. Dou, NPG Asia Mater. 4 (2012) e3–e7.

    Article  Google Scholar 

  5. M.A. Susner, S.D. Bohnenstiehl, S.A. Dregia, M.D. Sumption, Y. Yang, J.J. Donovan, E.W. Collings, Appl. Phys. Lett. 16, 162603 (2014)

    Article  Google Scholar 

  6. X. Xu, J. H. Kim, W. K. Yeoh, Y. Zhang, S.X. Dou, Supercond. Sci. Technol. 19 (2006) L47–L50.

    Article  Google Scholar 

  7. K. Yamamoto, K. Osamura, S. Balamurugan, T. Nakamura, T. Hoshino, I. Muta, Supercond. Sci. Technol. 16 (2003) 1052–1058.

    Article  Google Scholar 

  8. J.-H. Ahn, S. Oh, Physica C 470, 1422–1425 (2010)

    Article  Google Scholar 

  9. O.V. Shcherbakova, A.V. Pan, S. Soltanian, S.X. Dou, D. Wexler, Supercond. Sci. Technol. 20 (2007) 5–10.

    Article  Google Scholar 

  10. M. Maeda, Y. Zhao, Y. Watanabe, H. Matsuoka, Y. Kubota, IEEE Trans. Appl. Supercond 19, 2763–2766 (2009)

    Article  Google Scholar 

  11. M. Muralidhar, K. Nozaki, H. Kobayashi, X.L. Zeng, A. Koblischka-Veneva, M.R. Koblischka, K. Inoue, M. Murakami, J Alloy Compd 649, 833–842 (2015)

    Article  Google Scholar 

  12. Q. Cai, Y. Liu, Q. Guo, Z. Ma, H. Li, Scr. Mater 124, 184–188 (2016)

    Article  Google Scholar 

  13. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii, K. Kishio, Supercond. Sci. Technol. 18 (2005) 116–121.

    Article  Google Scholar 

  14. Z. Ma, H. Jiang, Y. Liu, Supercond. Sci. Technol. 23 (2010) 025005.

    Article  Google Scholar 

  15. Q. Cai, Y. Liu, L. Z. Ma Yu, Scr. Mater. 67, 92–95 (2012)

    Article  Google Scholar 

  16. C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)

    Article  Google Scholar 

  17. Q. Cai, Y. Liu, Z. Ma, L. Yu, J. Xiong, H. Li, J. Alloy. Compd. 585, 78–84 (2014)

    Article  Google Scholar 

  18. Z. Q. Ma, Y.C. Liu, Inter. Mater. Rev. 56 (2011) 267–286.

    Article  Google Scholar 

  19. H.M. Rietveld, J. Appl. Cryst. 2, 65–71 (1969)

    Article  Google Scholar 

  20. E. Martinez, P. Mikheenko, M. Martinez-lopez, A. Millan, A. Bevan, S.J. Abell, Phys. Rev. B 75, 134515 (2007)

    Article  Google Scholar 

  21. H. Fujii, K. Togano, K. Ozawa, J. Mater. Res. 23, 507–514 (2011)

    Article  Google Scholar 

  22. A. Yamamoto, J. Shimoyama, K. Kishio, T. Matsushita, Supercond. Sci. Technol. 20 (2007) 658–666.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the China National Funds for Distinguished Young Scientists (Granted No. 51325401), the National Natural Science Foundation of China (Granted No. 51474156 and U1660201), the National High Technology Research and Development Program of China (Granted No. 2015AA042504) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Liu, Y., Ma, Z. et al. Enhancement of synthesis efficiency and critical current density in glycine-doped MgB2 bulks by two-step sintering. J Mater Sci: Mater Electron 28, 5645–5651 (2017). https://doi.org/10.1007/s10854-016-6235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6235-1

Keywords

Navigation