Skip to main content
Log in

Magnetic Properties and Photocatalytic Behavior of Co Co-doped BiFeO3:Er

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The multiferroic materials Bi0.95Er0.05Fe1−xCox O3 (x = 0, 0.01, 0.03, and 0.05) are synthesized by solvothermal method. X-ray diffraction pattern is used to confirm the formation of rhombohedral crystal structure. TEM images show agglomerated nanosize particles. With the concentration of Co, a red shift is observed in the charge transfer transition of O2p-Fe3d band and band gap decreases. At higher concentration of Co, the saturation magnetization enhances and coercivity also varies with the concentration of Co. The photocatalytic degradation of methylene blue is evaluated under the visible light with the assistance of H2O2. With the increase in Co concentration, the photocatalytic activity decreases. The main species responsible for the degradation is found out using scavengers like ammonium oxalate, silver nitrate, p-benzoquinone, and tert-butyl-alcohol. The possible mechanism for the degradation of dye is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., Xu, Q.: Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 259, 53–61 (2015)

    Article  Google Scholar 

  2. Trovó, A.G., Hassan, A.K., Sillanpää, M., Tang, W.Z.: Degradation of acid blue 161 by fenton and photo-fenton processes. Int. J. Environ. Sci. Technol., 1–12 (2015)

  3. Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K.: A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustainable Energy Rev. 11, 401–425 (2007)

    Article  Google Scholar 

  4. McLaren, A., Valdes-Solis, T., Li, G., Tsang, S.C.: Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009)

    Article  Google Scholar 

  5. Ge, M., Zhu, N., Zhao, Y., Li, J., Liu, L.: Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension. Ind. Eng. Chem. Res. 51, 5167–5173 (2012)

    Article  Google Scholar 

  6. Meng, X., Zhang, Z.: Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J. Mol. Catal. A: Chem. 423, 533–549 (2016)

    Article  Google Scholar 

  7. Konstantinou, I.K., Albanis, T.A.: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal., B 49, 1–14 (2004)

    Article  Google Scholar 

  8. Friedmann, D., Mendive, C., Bahnemann, D.: TiO,2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 99, 398–406 (2010)

    Article  Google Scholar 

  9. Guo, R., Fang, L., Dong, W., Zheng, F., Shen, M.: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 114, 21390–21396 (2010)

    Article  Google Scholar 

  10. Xu, H.-M., Wang, H.-C., Shen, Y., Lin, Y.-H., Nan, C.-W.: Photocatalytic and magnetic behaviors of BiFeO3 thin films deposited on different substrates. J. Appl. Phys. 116, 174307 (2014)

    Article  ADS  Google Scholar 

  11. Li, S., Lin, Y.-H., Zhang, B.-P., Wang, Y., Nan, C.-W.: Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C. 114, 2903–2908 (2010)

    Article  Google Scholar 

  12. Di, L.J., Yang, H., Hu, G., Xian, T., Ma, J.Y., Jiang, J.L., Li, R. S., Wei, Z.Q.: Enhanced photocatalytic activity of BiFeO3 particles by surface decoration with Ag nanoparticles. J. Mater. Sci. – Mater. Electron. 25, 2463–2469 (2014)

    Article  Google Scholar 

  13. Mohan, S., Subramanian, B., Bhaumik, I., Gupta, P.K., Jaisankar, S.N.: Nanostructured Bi(1−x)Gd(x)FeO3—a multiferroic photocatalyst on its sunlight driven photocatalytic activity. RSC Adv. 4, 16871–16878 (2014)

    Article  Google Scholar 

  14. Yang, C.-H., Kan, D., Takeuchi, I., Nagarajan, V., Seidel, J.: Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)

    Article  Google Scholar 

  15. Catalan, G., Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  16. Khomskii, D.: Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)

    Article  ADS  Google Scholar 

  17. Park, T.-J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  ADS  Google Scholar 

  18. Du, Y., Cheng, Z.X., Shahbazi, M., Collings, E.W., Dou, S.X., Wang, X.L.: Enhancement of ferromagnetic and dielectric properties in lanthanum doped BiFeO3 by hydrothermal synthesis. J. Alloys Compd. 490, 637–641 (2010)

    Article  Google Scholar 

  19. Chen, Z., Wang, C., Li, T., Hao, J., Zhang, J.: Investigation on electrical and magnetic properties of Gd-doped BiFeO3. J. Supercond. Nov. Magn. 23, 527–530 (2010)

    Article  Google Scholar 

  20. Zhao, J., Liu, S., Zhang, W., Liu, Z., Liu, Z.: Structural and magnetic properties of Er-doped BiFeO3 nanoparticles. J. Nanopart. Res. 15, 1–7 (2013)

    Google Scholar 

  21. Hou, Z.-L., Zhou, H.-F., Kong, L.-B., Jin, H.-B., Qi, X., Cao, M.-S.: Enhanced ferromagnetism and microwave absorption properties of BiFeO3 nanocrystals with Ho substitution. Mater. Lett. 84, 110–113 (2012)

    Article  Google Scholar 

  22. Khomchenko, V., Kopcewicz, M., Lopes, A., Pogorelov, Y., Araujo, J., Vieira, J., Kholkin, A.: Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1−xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics. J. Phys. D: Appl. Phys. 41, 102003 (2008)

    Article  ADS  Google Scholar 

  23. Chaudhari, Y., Mahajan, C.M., Singh, A., Jagtap, P., Chatterjee, R., Bendre, S.: Multiferroic properties of nanocrystalline BiFe1−xNixO3 (x = 0.0–0.15) perovskite ceramics. J. Magn. Magn. Mater. 395, 329–335 (2015)

    Article  ADS  Google Scholar 

  24. Layek, S., Saha, S., Verma, H.C.: Preparation, structural and magnetic studies on BiFe,1−xCrxO3 (x = 0.0, 0.05 and 0.1) multiferroic nanoparticles. AIP Adv. 3, 032140 (2013)

    Article  ADS  Google Scholar 

  25. Chauhan, S., Kumar, M., Chhoker, S., Katyal, S., Singh, H., Jewariya, M., Yadav, K.: Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Commun. 152, 525–529 (2012)

    Article  ADS  Google Scholar 

  26. Ray, J., Biswal, A.K., Acharya, S., Ganesan, V., Pradhan, D.K., Vishwakarma, P.N.: Effect of Co substitution on the magnetic properties of BiFeO3. J. Magn. Magn. Mater. 324, 4084–4089 (2012)

    Article  ADS  Google Scholar 

  27. Mao, W., Li, X.A., Li, Y., Wang, X., Wang, Y., Ma, Y., Feng, X., Yang, T., Yang, J.: Structural phase transition and multiferroic properties of single-phase Bi1−xErxFe0.95Co0.05O3. Mater. Lett. 97, 56–58 (2013)

    Article  Google Scholar 

  28. Reddy Vanga, P., Mangalaraja, R.V., Giridharan, N.V., Ashok, M.: PTCR Behavior of BiFeO3 synthesized by the solvothermal method. Mater. Lett. 143, 230–232 (2015)

    Article  Google Scholar 

  29. Zhang, Y., Zhang, N., Tang, Z.-R., Xu, Y.-J.: Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem. Sci. 4, 1820–1824 (2013)

    Article  Google Scholar 

  30. Xiang, Q., Lang, D., Shen, T., Liu, F.: Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl. Catal., B: Environ. 162, 196–203 (2015)

    Article  Google Scholar 

  31. Ramachandran, B., Dixit, A., Naik, R., Lawes, G., Rao, M.S.R.: Charge transfer and electronic transitions in polycrystalline BiFeO3. Phys. Rev. B : Condens. Matter. 82, 012102 (2010)

    Article  ADS  Google Scholar 

  32. Wood, D., Tauc, J.: Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144 (1972)

    Article  ADS  Google Scholar 

  33. Reddy Vanga, P., Mangalaraja, R.V., Ashok, M.: Structural, magnetic and photocatalytic properties of La and alkaline co-doped BiFeO3 nanoparticles. Mat. Sci. Semicond. Process. 40, 796–802 (2015)

    Article  Google Scholar 

  34. Muneeswaran, M., Dhanalakshmi, R., Giridharan, N.V.: Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3. J. Mater. Sci.: Mater. Electron. 26, 3827–3839 (2015)

    Google Scholar 

  35. Vanga, P.R., Mangalaraja, R.V., Giridharan, N.V., Ashok, M.: Influence of divalent Ni and trivalent Cr ions on the properties of ytterbium modified bismuth ferrite. J. Alloys Compd. 684, 55–61 (2016)

    Article  Google Scholar 

  36. Arya, G.S., Negi, N.S.: Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D: Appl. Phys. 46, 095004 (2013)

    Article  ADS  Google Scholar 

  37. Chen, F., Ma, W., He, J., Zhao, J.: Fenton degradation of malachite green catalyzed by aromatic additives. J. Phys. Chem. A. 106, 9485–9490 (2002)

    Article  Google Scholar 

  38. Chen, F., He, J., Zhao, J., Yu, J.C.: Photo-fenton degradation of malachite green catalyzed by aromatic compounds under visible light irradiation. New J. Chem. 26, 336–341 (2002)

    Article  Google Scholar 

  39. Wang, X., Zhang, M., Tian, P., Chin, W.S., Zhang, C.M.: A facile approach to pure-phase Bi2Fe4O9 nanoparticles sensitive to visible light. Appl. Surf. Sci. 321, 144–149 (2014)

    Article  ADS  Google Scholar 

  40. Jusoh, R., Jalil, A.A., Triwahyono, S., Kamarudin, N.H.N.: Synthesis of dual type Fe species supported mesostructured silica nanoparticles: synergistical effects in photocatalytic activity. RSC Adv. 5, 9727–9736 (2015)

    Article  Google Scholar 

  41. Wu, K., Xie, Y., Zhao, J., Hidaka, H.: Photo-fenton degradation of a dye under visible light irradiation. J. Mol. Catal. A: Chem. 144, 77–84 (1999)

    Article  Google Scholar 

  42. Rauf, M.A., Ashraf, S.S.: Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009)

    Article  Google Scholar 

  43. Lv, Y., Liu, Y., Zhu, Y., Zhu, Y.: Surface oxygen vacancy induced photocatalytic performance enhancement of a biPO4 nanorod. J. Mater. Chem. A 2, 1174–1182 (2014)

    Article  Google Scholar 

  44. Zhou, X., Lan, J., Liu, G., Deng, K., Yang, Y., Nie, G., Yu, J., Zhi, L.: Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew. Chem. Int. Ed. 51, 178–182 (2012)

    Article  Google Scholar 

  45. Zhu, J., Deng, Z., Chen, F., Zhang, J., Chen, H., Anpo, M., Huang, J., Zhang, L.: Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of cr3+. Appl. Catal. B Environ. 62, 329–335 (2006)

    Article  Google Scholar 

  46. Irfan, S., Rizwan, S., Shen, Y., Li, L., Asfandiyar, A., Butt, S., Nan, C.-W.: The gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Sci. Rep. 7, 42493 (2017)

    Article  ADS  Google Scholar 

  47. Irfan, S., Shen, Y., Rizwan, S., Wang, H.-C., Khan, S.B., Nan, C.-W.: Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100, 31–40 (2017)

    Article  Google Scholar 

  48. Vanga, P.R., Mangalaraja, R.V., Ashok, M.: Effect of co-doping on the optical, magnetic and photocatalytic properties of the Gd modified BiFeO3. J. Mater. Sci: Mater. Electron. 27, 5699–5706 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge DST, Government of India for VSM under FIST programme (SR/FST/PSI-117/2007) sanctioned to Physics Department, NIT Tiruchirappalli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Reddy Vanga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanga, P.R., Mangalaraja, R.V. & Ashok, M. Magnetic Properties and Photocatalytic Behavior of Co Co-doped BiFeO3:Er. J Supercond Nov Magn 31, 89–97 (2018). https://doi.org/10.1007/s10948-017-4172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4172-8

Keywords

Navigation