Skip to main content
Log in

Structural, magnetic, optical, and photocatalytic properties of Ca–Ni doped BiFeO3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, we have studied the structural, magnetic, optical, and photocatalytic properties of Bi1−xCaxFe1−xNixO3 multiferroics synthesized by sol–gel method. X-ray diffraction predicted the superposition of two structural phases (rhombohedral-R3c + orthorhombic-Pnma) for (x = 0.05, 0.10) samples. Correspondingly, drastic variations in the Raman modes were detected at low and high wavenumbers with increasing the Ca–Ni content. The larger change in the magnetic parameters at room temperature was identified for Bi0.90Ca0.10Fe0.90Ni0.10O3 nanoparticles caused by the formation of a new orthorhombic phase. The XPS spectroscopy study supported the magnetic enhancement in x = 0.10 samples due to increasing concentration of Fe2+, Ni2+ ions, and oxygen vacancies. The shift of ESR pattern with doping agrees with the magnetization values. The energy band gap values were altered by increasing the Ca–Ni content in BiFeO3 samples, from 2.22 to 2.05 eV. The photocatalytic activity of Ca–Ni doped BiFeO3 photocatalyst showed higher degradation rate (− 0.035/min) of Methylene blue (MB) in comparison to pure BiFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019). https://doi.org/10.1038/s41563-018-0275-2

    Article  CAS  Google Scholar 

  2. J.F. Scott, Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012). https://doi.org/10.1039/C2JM16137K

    Article  CAS  Google Scholar 

  3. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  4. Y. Li, M.-S. Cao, D.-W. Wang, J. Yuan, High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 5, 77184–77191 (2015). https://doi.org/10.1039/C5RA15458H

    Article  CAS  Google Scholar 

  5. B. Sun, Y. Liu, W. Zhao, P. Chen, Magnetic-field and white-light controlled resistive switching behaviours in Ag/[BiFeO3/γ Fe2O3]/FTO device. RSC Adv. 5, 13513–13518 (2015). https://doi.org/10.1039/C4RA14605K

    Article  CAS  Google Scholar 

  6. S. Das, S. Rana, S. MdMursalin, P. Rana, A. Sen, Sonochemically prepared nanosized BiFeO3 as novel SO2 sensor. Sens. Actuat. B-Chem. 218, 122–127 (2015). https://doi.org/10.1021/ac9812429

    Article  CAS  Google Scholar 

  7. D. Tiwari, D.J. Fermin, T.K. Chaudhuri, A. Ray, Solution processed bismuth ferrite thin films for all-oxide solar photovoltaics. J. Phys. Chem. C 119, 5872–5877 (2015). https://doi.org/10.1021/jp512821a

    Article  CAS  Google Scholar 

  8. S. Acharya, S. Martha, P.C. Sahoo, K. Parida, Glimpses towards the modification of perovskite with graphene-analogous materials in photocatalytic applications. Inorg. Chem. Front. 2, 807–823 (2015). https://doi.org/10.1039/C5QI00124B

    Article  CAS  Google Scholar 

  9. A. Rogov, M. Irondelle, F. Ramos-Gomez, J. Bode, D. Staedler, S. Passemard, S. Courvoisier, Y. Yamamoto, F. Waharte, D. Ciepielewski, P. Rideau, S. Gerber-Lemaire, F. Alves, J. Salamero, L. Bonacina, J.-P. Wolf, Simultaneous multi-harmonic imaging of nanoparticles in tissues for increased selectivity. ACS Photonics 2, 1416–1422 (2015). https://doi.org/10.1021/acsphotonics.5b00289

    Article  CAS  Google Scholar 

  10. F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B.J. Nelson, S. Pané, Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation. Iscience 4, 236–246 (2018). https://doi.org/10.1016/j.isci.2018.06.003

    Article  CAS  Google Scholar 

  11. M.E. Castillo, V.V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. Wende, D.C. Lupascu, Effect of particle size on ferroelectric and magnetic properties of BiFeO3 nanopowders. Nanotechnology 24, 355701 (2013). https://doi.org/10.1088/0957-4484/24/35/355701

    Article  CAS  Google Scholar 

  12. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007). https://doi.org/10.1021/nl063039w

    Article  CAS  Google Scholar 

  13. X. Bai, M. Bugnet, C. Frontera, P. Gemeiner, J. Guillot, D. Lenoble, I.C. Infante, Crystal growth mechanisms of BiFeO3 nanoparticles. Inorg. Chem. 58(17), 11364–11371 (2019). https://doi.org/10.1021/acs.inorgchem.9b00461

    Article  CAS  Google Scholar 

  14. P.S.V. Mocherla, C. Karthik, R. Ubic, M.S. Ramachandra Rao, C. Sudakar, Tunable bandgap in BiFeO3 nanoparticles: the role of microstrain and oxygen defects. Appl. Phys. Lett. 103, 10220910 (2013). https://doi.org/10.1063/1.4813539

    Article  CAS  Google Scholar 

  15. P. Suresh, S. Srinath, Effect of synthesis route on the multiferroic properties of BiFeO3: a comparative study between solid state and solgel methods. J. Alloys Compd. 649, 843–850 (2015). https://doi.org/10.1016/j.jallcom.2015.07.152

    Article  CAS  Google Scholar 

  16. J.P. Zhou, R.J. Xiao, Y.X. Zhang, Z. Shi, G.Q. Zhu, Novel behaviors of single-crystalline BiFeO3 nanorods hydrothermally synthesized under magnetic field. J. Mater. Chem. 3, 6924–6931 (2015). https://doi.org/10.1039/C5TC00747J

    Article  CAS  Google Scholar 

  17. B. Liu, B. Hu, Z. Du, Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires. Chem. Commun. 47, 8166–8168 (2011). https://doi.org/10.1039/C1CC11896J

    Article  CAS  Google Scholar 

  18. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, A comparative study on the structural, vibrational, dielectric, magnetic and optical properties of microcrystalline, nanocrystalline BiFeO3 and core-shell structured BiFeO3@SiO2 nanocomposites. J. Alloy. Compd. 666, 454–467 (2016). https://doi.org/10.1016/j.jallcom.2016.01.116

    Article  CAS  Google Scholar 

  19. Q. Zhang, D. Sando, V. Nagarajan, Chemical route derived bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C 4, 4092–4124 (2016). https://doi.org/10.1039/C6TC00243A

    Article  CAS  Google Scholar 

  20. D.V. Karpinsky, I.O. Troyanchuk, M.V. Bushinsky et al., Crystal structure and magnetic properties of Bi1−x Ca xFe1−xMn(Ti)xO3 ceramics across the phase boundary. J Mater. Sci. 51, 10506–10514 (2016). https://doi.org/10.1007/s10853-016-0271-3

    Article  CAS  Google Scholar 

  21. F. Lin, Q. Yu, L. Deng et al., Effect of La/Cr codoping on structural transformation, leakage, dielectric and magnetic properties of BiFeO3 ceramics. J. Mater. Sci. 52, 7118–7129 (2017). https://doi.org/10.1007/s10853-017-0947-3

    Article  CAS  Google Scholar 

  22. S. Bharathkumar, M. Sakar, K. Rohith, S. Balakumar, Versatility of electrospinning on the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic, photocatalytic activities. Phys. Chem. Chem. Phys. 17, 17745–17754 (2015). https://doi.org/10.1039/C5CP01640A

    Article  CAS  Google Scholar 

  23. X. Yang, G. Xu, Z. Ren, X. Wei, C. Chao, S. Gong, G. Shen, G. Han, The hydrothermal synthesis and formation mechanism of single-crystalline perovskite BiFeO3 microplates with dominant (012) facets. Cry. Eng. Comm. 16, 4176–4182 (2014). https://doi.org/10.1039/C3CE42488J

    Article  CAS  Google Scholar 

  24. M.R. Hoffmann, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995). https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  25. H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5, 6732–6743 (2012). https://doi.org/10.1039/C2EE03447F

    Article  CAS  Google Scholar 

  26. P. Caroline, G. Vinitha, D. Joseph, A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes. Environ. Nanotechnol. Monitor. Manag. 7, 110–120 (2017). https://doi.org/10.1016/j.enmm.2017.02.001

    Article  Google Scholar 

  27. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889–2892 (2007). https://doi.org/10.1002/adma.200602377

    Article  CAS  Google Scholar 

  28. J. Kang, Y. Tang, M. Wang, C. Jin, J. Liu, S. Li, Z. Li, J. Zhu, The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4 heterojunction catalyst and its mechanism. J. Environ. Chem. Eng. 9, 105524 (2021). https://doi.org/10.1016/j.jece.2021.105524

    Article  CAS  Google Scholar 

  29. M. Sakar, S. Balakumar, P. Saravanan, S. Bharathkumar, Compliments of confinements: substitution and dimension induced magnetic origin and bandbending mediated photocatalytic enhancements in Bi1-xDyxFeO3 particulate and fiber nanostructures. Nanoscale 7, 10667–10679 (2015). https://doi.org/10.1039/C5NR01079A

    Article  CAS  Google Scholar 

  30. S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19, 6478–6484 (2007). https://doi.org/10.1021/cm071827w

    Article  CAS  Google Scholar 

  31. K. Fujii, H. Kato, K. Omoto, M. Yashima, J. Chen, X. Xing, Experimental visualization of the Bi–O covalency in ferroelectric bismuth ferrite (BiFeO3) by synchrotron X-ray powder diffraction analysis. Phys. Chem. Chem. Phys. 15, 6779–6782 (2013). https://doi.org/10.1039/C3CP50236H

    Article  CAS  Google Scholar 

  32. J.A. Alonso, M.J. Martínez-Lope, J.L. Garcıa-Muñnoz, M.T. Fernández-Díaz, A structural and magnetic study of the defect perovskite LaNiO2:5 from high-resolution neutron diffraction data. J. Phys. Condens. Matter 9, 6417–6426 (1997). https://doi.org/10.1088/0953-8984/9/30/010

    Article  CAS  Google Scholar 

  33. J. Bielecki, P. Svedlindh, D.T. Tibebu, S. Cai, S.-G. Eriksson, L. Böorjesson, C.S. Knee, Structural and magnetic properties of isovalently substituted multiferroic BiFeO3. Phy. Rev. B 86, 184422 (2012). https://doi.org/10.1103/PhysRevB.86.184422

    Article  CAS  Google Scholar 

  34. P. Hermet, M. Goffinet, J. Kreisel, Ph. Ghosez, Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys. Rev. B 75, 220102 (2007). https://doi.org/10.1103/PhysRevB.75.220102

    Article  CAS  Google Scholar 

  35. H. Feng, The role of Coulomb and exchange interaction on the Dzyaloshinskii-Moriya interaction (DMI) in BiFeO3. J. Mag. Mag. Mater. 322, 1765–1769 (2010). https://doi.org/10.1016/j.jmmm.2009.12.025

    Article  CAS  Google Scholar 

  36. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, M. Jewariya, B.N. Suma, G. Kunte, Structural modification and enhanced magnetic properties with two-phonon in Ca-Co codoped BiFeO3 nanoparticles. Ceram. Int. 41, 14306–14314 (2015). https://doi.org/10.1016/j.ceramint.2015.07.062

    Article  CAS  Google Scholar 

  37. S. Chauhan, M. Kumar, A. Yousuf, P. Rathi, M. Sahni, S. Singh, Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Mater. Chem. Phys. 263, 124402 (2021). https://doi.org/10.1016/j.matchemphys.2021.124402

    Article  CAS  Google Scholar 

  38. S. Chauhan, B. Tripathi, M. Kumar, M. Sahni, R.C. Singh, S. Singh, Influence of Na substitution on structural, magnetic, optical and photocatalytic properties of bismuth ferrite nanoparticles. J. Mater. Sci. 31(22), 20191–20209 (2020). https://doi.org/10.1007/s10854-020-04540-y

    Article  CAS  Google Scholar 

  39. Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. Fang, M. Li, X. Zhao, Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films. J. Appl. Phys. 104, 084106 (2008). https://doi.org/10.1063/1.3000478

    Article  CAS  Google Scholar 

  40. A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel, K.S. Kumar, Role of oxygen vacancy and Fe–O–Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 43, 5731–5738 (2014). https://doi.org/10.1039/C3DT52260A

    Article  CAS  Google Scholar 

  41. R. Pisarev, A. Moskvin, A. Kalashnikova, T. Rasing, Chemical pressure effect on optical properties in multiferroic bulk BiFeO3. Phys. Rev. B 79, 235128 (2009). https://doi.org/10.1063/1.4757589

    Article  CAS  Google Scholar 

  42. H. Zhang, W. Liu, P. Wu, X. Hai, M. Guo, X. Xi, J. Gao, X. Wang, F. Guo, X. Xu, C. Wang, G. Liu, W. Chu, S. Wang, Novel behaviors of multiferroic properties in Na-doped BiFeO3 nanoparticles. Nanoscale 6, 10831–10838 (2014). https://doi.org/10.1039/c4nr02557a

    Article  CAS  Google Scholar 

  43. S. Chauhan, M. Kumar, H. Pandey, S. Chhoker, S.C. Katyal, Ca–Li substitution driven structural, dynamics of electron density, magnetic and optical properties of BiFeO3 nanoparticles. J. Alloys Compd. 811, 151965 (2019). https://doi.org/10.1016/j.jallcom.2019.151965

    Article  CAS  Google Scholar 

  44. Y. Zhang, Y. Yang, Z. Dong, J. Shen, Q. Song, X. Wang, W. Mao, Y. Pu, X. Li, Enhanced photocatalytic activity of Ba doped BiFeO3 by turning morphologies and band gap. J Mater Sci: Mater Electron. 31, 15007–15012 (2020). https://doi.org/10.1007/s10854-020-04064-5

    Article  CAS  Google Scholar 

  45. Y. Zhang, Z. Wang, J. Zhu, X. He, H. Xue, S. Li, X.A. Li et al., Ferroelectric polarization effect on the photocatalytic activity of Bi0.9Ca0.1FeO3/CdS S-scheme nanocomposites. J. Environ. Sci. 124, 310–318 (2022). https://doi.org/10.1016/j.jes.2021.09.021

    Article  Google Scholar 

  46. S. Li, Y. Tang, M. Wang, J. Kang, C. Jin, J. Liu, Z. Li, J. Zhu, NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: characterization, performance and mechanism. J. Alloy. Compd. 880, 160547 (2021). https://doi.org/10.1016/j.jallcom.2021.160547

    Article  CAS  Google Scholar 

  47. Z. Hu, D. Chen, S. Wang, N. Zhang, L. Qin, Y. Huang, Facile synthesis of Sm-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic performance. Mater. Sci. Eng. B 220, 1–12 (2017). https://doi.org/10.1016/j.mseb.2017.03.005

    Article  CAS  Google Scholar 

  48. S. Irfan, Y. Shen, S. Rizwan, H.C. Wang, S.B. Khan, C.W. Nan, Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100, 31–40 (2017). https://doi.org/10.1111/jace.14487

    Article  CAS  Google Scholar 

  49. E. Moradi, H. Farajnejad Ghadi, M. Rabbani, R. Rahimi, Microwave-assisted synthesized and characterization of BiFeO3 (CTAB/PEG/PVA) nanocomposites by the auto-combustion method with efficient visible-light photocatalytic dye degradation. J. Mater. Sci. 32, 8237–8248 (2021). https://doi.org/10.1007/s10854-020-05202-9

    Article  CAS  Google Scholar 

  50. S. Irfan, L. Li, A.S. Saleemi, C.W. Nan, Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 5(22), 11143–11151 (2017). https://doi.org/10.1039/C7TA01847A

    Article  CAS  Google Scholar 

  51. S.M. Lam, Z.H. Jaffari, J.C. Sin, Hydrothermal synthesis of coral-like palladium-doped BiFeO3 nanocomposites with enhanced photocatalytic and magnetic properties. Mater. Lett. 224, 1–4 (2018). https://doi.org/10.1016/j.matlet.2018.04.058

    Article  CAS  Google Scholar 

  52. S. Bharathkumar, M. Sakar, S. Balakumar, Egg white-mediated synthesis of BiFeO3 cubes and their enhanced photocatalytic degradation properties under solar irradiation. J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-022-08213-w

    Article  Google Scholar 

  53. A. Indriyani, Y. Yoki, R. Yunarti, D. Apriandanu, S. Rizki, One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L. leaves extracts for photocatalytic dye degradation. Appl. Surface Sci. 563, 150113 (2021). https://doi.org/10.1016/j.apsusc.2021.150113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sunil Chauhan offers a warm gratitude to Science and Engineering Research Board (SERB), File Number TAR/2019/000210, Govt. of India to accomplish the current research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All co-authors have seen and agree with the contents of the manuscript. All co-authors certify that the submission is original work and is not under review at any other publication.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, B., Chauhan, S., Kumar, M. et al. Structural, magnetic, optical, and photocatalytic properties of Ca–Ni doped BiFeO3 nanoparticles. J Mater Sci: Mater Electron 33, 16856–16873 (2022). https://doi.org/10.1007/s10854-022-08555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08555-5

Navigation