Skip to main content
Log in

Prospect of Node-Line Semimetal Cu3PdN to Be a Topological Superconductor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigate systematically the vibrational and electron–phonon interaction properties of node-line semimetal Cu3PdN under strain and electron doping by using first-principles calculations. It is found that vibrational modes interact with electrons at the Fermi level isotropically with a three-dimensional character. The phonon frequency and Eliashberg spectral function can be tuned by strain remarkably, and the maximum transition temperature (T c) predicted is 0.03 K under strain ε = 0.10. The coexistence of superconductivity and topological physics in Cu3PdN makes it a promising candidate for future quantum computation platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wan, X., Turner, A., Vishwanath, A., Savrasov, S.: Phys. Rev. B 83, 205101 (2011). doi:10.1103/PhysRevB.83.205101

    Article  ADS  Google Scholar 

  2. Wang, Z., Weng, H., Wu, Q., Dai, X., Fang, Z.: Phys. Rev. B 88, 125427 (2013). doi:10.1103/PhysRevB.88.125427

    Article  ADS  Google Scholar 

  3. Weng, H., Liang, Y., Xu, Q., et al.: Phys. Rev. B 92, 045108 (2015). doi:10.1103/PhysRevB.92.045108

    Article  ADS  Google Scholar 

  4. Nuovo Majorana, E.: Cim 14, 171 (1937). doi:10.1007/BF02961314

    Article  Google Scholar 

  5. Ali, M., Gibson, Q., Klimczuk, T., Cava, R.J.: Phys. Rev. B 89, 020505(R) (2014). doi:10.1103/PhysRevB.89.020505

    Article  ADS  Google Scholar 

  6. Bian, G., Chang, T., Sankar, R., Xu, S., et al.: Nat. Commun. 7, 10556 (2016). doi:10.1038/ncomms10556

    Article  ADS  Google Scholar 

  7. Qi, Y., Pavel, G., Mazhar, N., et al.: Nat. Commun. 1, 11038 (2016). doi:10.1038/ncomms11038

    Article  ADS  Google Scholar 

  8. Chen, P., Chang, T., Jeng, H.: Phys. Rev. B 94, 165148 (2016). doi:10.1103/PhysRevB.94.165148

    Article  ADS  Google Scholar 

  9. Yu, R., Weng, H., Fang, Z., Dai, X., Hu, X.: Phys. Rev. Lett. 115, 036807 (2015). doi:10.1103/PhysRevLett.115.036807

    Article  ADS  Google Scholar 

  10. Liu, X., Li, G., Chen, X.: Solid State Commun. 247, 31 (2016). doi:10.1016/j.ssc.2016.08.014

    Article  ADS  Google Scholar 

  11. He, B., Dong, C., Yang, L.: Supercond. Sci. Technol. 26, 125015 (2013). doi:10.1088/0953-2048/26/12/125015

    Article  ADS  Google Scholar 

  12. Savini, G., Ferrari, A., Giustino, F.: Phys. Rev. Lett. 105, 037002 (2010). doi:10.1103/PhysRevLett.105.037002

    Article  ADS  Google Scholar 

  13. Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V., Shylin, S.: Nature 525, 73 (2015). doi:10.1038/nature14964

    Article  ADS  Google Scholar 

  14. Giannozzi, P., et al.: J. Phys. Condens. Matter 21, 395502 (2009). doi:10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  15. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996). doi:10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  16. Baroni, S., Gironcoli, S.D., Corso, A.D., et al.: Rev. Mod. Phys. 73, 515 (2001). doi:10.1103/RevModPhys.73.515

    Article  ADS  Google Scholar 

  17. Savrasov, S., Savrasov, D.: Phys. Rev. B 54, 16487 (1996). doi:10.1103/PhysRevB.54.16487

    Article  ADS  Google Scholar 

  18. Savrasov, S., Savrasov, D., Anderson, O.: Phys. Rev. Lett. 72, 372 (1994). doi:10.1103/PhysRevLett.72.372

    Article  ADS  Google Scholar 

  19. Siegel, A., Parlinski, K., Wdowik, U.D.: Phys. Rev. B 74, 104116 (2006). doi:10.1103/PhysRevB.74.104116

    Article  ADS  Google Scholar 

  20. Maradudin, A., et al.: Solid State Physics, 2nd edn (chapter 4). Academic, New York (1971)

    Google Scholar 

  21. Saib, S., Bouarissa, N., et al.: J. Appl. Phys. 103, 013506 (2008). doi:10.1063/1.2828151

    Article  ADS  Google Scholar 

  22. Kushwaha, M., Halevi, P., Dobrzynski, L., Rouhani, D.: Phys. Rev. Lett. 71, 2022 (1993). doi:10.1103/PhysRevLett.71.2022

    Article  ADS  Google Scholar 

  23. Sigalas, M.M., Economou, E.N.: Solid State Commun. 86, 141 (1993). doi:10.1016/0038-1098(93)90888-T

    Article  ADS  Google Scholar 

  24. Prafulla, K.J.: Phys. Rev. B 72, 214502 (2005). doi:10.1103/PhysRevB.72.214502

    Article  Google Scholar 

  25. Kong, Y., Dolgov, O., Jepsen, O., Andersen, O.: Phys. Rev. B 64, 020501 (2001). doi:10.1103/PhysRevB.64.020501

    Article  ADS  Google Scholar 

  26. Allen, P., Dynes, R.: Phys. Rev. B 12, 905 (1975). doi:10.1103/PhysRevB.12.905

    Article  ADS  Google Scholar 

  27. Mcmillan, W.: Phys. Rev. 167, 331 (1968). doi:10.1103/PhysRev.167.331

    Article  ADS  Google Scholar 

  28. Liu, A.Y., Mazin, I.I., Kortus, J.: Phys. Rev. Lett. 87, 087005 (2001). doi:10.1103/PhysRevLett.87.087005

    Article  ADS  Google Scholar 

  29. Tütüncü, H.M., Srivastava, G.P.: Physica C 507, 10 (2014). doi:10.1016/j.physc.2014.09.010

    Article  ADS  Google Scholar 

  30. Wälte, A., Fuchs, G., Müller, K.-H., et al.: Phys. Rev. B 70, 174503 (2004). doi:10.1103/PhysRevB.70.174503

    Article  ADS  Google Scholar 

  31. He, T., Huang, Q., Ramirez, A.P., et al.: Nature 411, 54 (2001). doi:10.1038/35075014

    Article  ADS  Google Scholar 

  32. Chen, J., Wang, X.: Chin. Phys. B 24, 086301 (2015). doi:10.1088/1674-1056/24/8/086301

    Article  ADS  Google Scholar 

  33. Ginzburg, V.: Contemp. Phys. 33, 15 (2006). doi:10.1080/00107519208219137

    Article  ADS  Google Scholar 

  34. Zhang, X., Liu, W.: Sci. Rep. 5, 8964 (2015). doi:10.1038/srep08964

    Article  Google Scholar 

  35. Sefat, A., Jin, R., Michael, A., et al.: Phys. Rev. Lett. 101, 117004 (2008). doi:10.1103/PhysRevLett.101.117004

    Article  ADS  Google Scholar 

  36. Bucci, F., Sanna, A., Profeta, G., Continenza, A., Gross, E.K.U.: Phys. Rev. B 95, 014415. doi:10.1103/PhysRevB.95.014415

Download references

Acknowledgements

This work was supported by the Guangxi Natural Science Foundation (No. 2016GXNSFBA380227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, J. & Xie, D. Prospect of Node-Line Semimetal Cu3PdN to Be a Topological Superconductor. J Supercond Nov Magn 30, 2727–2734 (2017). https://doi.org/10.1007/s10948-017-4133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4133-2

Keywords

Navigation