Skip to main content
Log in

Structural and Magnetic Properties of High Coercive Al-Substituted Strontium Hexaferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the correlation between replacement of Fe3+ ions by Al3+ and structural and magnetic properties of Sr-hexaferrites. To this regard, a simple sol–gel auto-combustion method followed by subsequent heat treatment in air was employed to synthesize nanocrystalline SrFe12−x Al x O19 (0 ≤ x ≤ 4). X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared (FT-IR), and vibrating sample magnetometer (VSM) methods were used in order to characterize the produced samples. The results show that the formation of the M-type hexaferrite phase is associated with some α-Fe2O3 as a secondary phase at low calcination temperature. By increasing the calcination temperature, high-purity hexaferrite phase without any unwanted phases can be formed. The average particle size of the substituted strontium ferrite gradually became smaller by addition of aluminum. The room temperature saturation magnetization values continuously reduced by increasing Al3+ that is contributed to substitution of Fe3+ by nonmagnetic ions in the lattice. However, the coercivity initially increases and then decreases with increasing the Al3+ content. A high coercivity up to 9.1 kOe was obtained for SrFe10Al2O19 which is much higher than the maximum theoretical value of H C for pure SrFe12O19 (7.5 kOe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ashiq, M.N., Javed Iqbal, M., Hussain Gul, I.: Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 323(3–4), 259–263 (2011)

    Article  ADS  Google Scholar 

  2. Wang, H.Z., Yao, B., Xu, Y., He, Q., Wen, G.H., Long, S.W., Fan, J., Li, G.D., Shan, L., Liu, B., Jiang, L.N., Gao, L.L.: Improvement of the coercivity of strontium hexaferrite induced by substitution of Al3+ ions for Fe3 + ions. J. Alloys Compd. 537, 43–49 (2012)

    Article  Google Scholar 

  3. Ghasemi, A.: Tuning static and high frequency magnetic properties of SrFe12−x (Mn0.5Co0.5Ti)x/2O19 nanoparticles and thin films via chemical control. J. Magn. Magn. Mater. 378, 340–344 (2015)

    Article  ADS  Google Scholar 

  4. Luo, H., Rai, B.K., Mishra, S.R., Nguyen, V.V., Liu, J.P.: Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324 (17), 2602–2608 (2012)

    Article  ADS  Google Scholar 

  5. Chawla, S.K., Mudsainiyan, R.K., Meena, S.S., Yusuf, S.M.: Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12−2x)O19. J. Magn. Magn. Mater. 350, 23–29 (2014)

    Article  ADS  Google Scholar 

  6. Pullar, R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  7. Liu, M., Shen, X., Song, F., Xiang, J., Meng, X.: Microstructure and magnetic properties of electrospun one-dimensional Al3 + -substituted SrFe12O19 nanofibers. J. Solid State Chem. 184(4), 871–876 (2011)

    Article  ADS  Google Scholar 

  8. Chawla, S.K., Meena, S.S., Kaur, P., Mudsainiyan, R.K., Yusuf, S.M.: Effect of site preferences on structural and magnetic switching properties of CO–Zr doped strontium hexaferrite SrCoxZrxFe(12−2x)O19. J. Magn. Magn. Mater. 378, 84–91 (2015)

    Article  ADS  Google Scholar 

  9. Wang, J.F., Ponton, C.B., Harris, I.R.: A study of the magnetic properties of hydrothermally synthesised Sr hexaferrite with Sm substitution. J. Magn. Magn. Mater. 234(2), 233–240 (2001)

    Article  ADS  Google Scholar 

  10. Ghasemi, A., Liu, X., Morisako, A.: Magnetic and microwave absorption properties of BaFe12−x(Mn0.5Cu0.5Zr)x/2O19 synthesized by sol–gel processing. J. Magn. Magn. Mater. 316(2), e105–e108 (2007)

    Article  ADS  Google Scholar 

  11. Rai, B.K., Mishra, S.R., Nguyen, V.V., Liu, J.P.: Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloys Compd. 550, 198–203 (2013)

    Article  Google Scholar 

  12. Hojjati Najafabadi, A., Mozaffarinia, R., Ghasemi, A.: Microstructural characteristics and magnetic properties of Al-substituted barium hexaferrite nanoparticles synthesized by auto-combustion sol–gel processing. J. Supercond. Nov. Magn. 28(9), 2821–2830 (2015)

    Article  Google Scholar 

  13. He, H.Y., Huang, J.F., Cao, L.Y., He, Z., Shen, Q.: Magnetic and microwave-absorbing properties of SrAl4Fe8O19 powders synthesized by coprecipitation and citric- combustion methods. Bull. Mater. Sci. 34(3), 463–468 (2011)

    Article  Google Scholar 

  14. Yang, X., Li, Q., Zhao, J., Li, B., Wang, Y.: Preparation and magnetic properties of controllable-morphologies nano-SrFe12O19 particles prepared by sol–gel self-propagation synthesis. J. Alloys Compd. 475(1–2), 312–315 (2009)

    Article  Google Scholar 

  15. Fu, Y.-P., Lin, C.-H., Pan, K.-Y.: Strontium hexaferrite powders prepared by a microwave-induced combustion process and some of their properties. J. Alloys Compd. 349(1–2), 228–231 (2003)

    Article  Google Scholar 

  16. Qiu, J., Liang, L., Gu, M.: Nanocrystalline structure and magnetic properties of barium ferrite particles prepared via glycine as a fuel. Mater. Sci. Eng. A 393(1–2), 361–365 (2005)

    Article  Google Scholar 

  17. Narang, S.B., Singh, A., Singh, K.: High frequency dielectric behavior of rare earth substituted Sr-M hexaferrite. J. Ceram. Process. Res. 8(5), 347 (2007)

    Google Scholar 

  18. Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction, 3rd edn. Prentice Hall (2001)

  19. Shannon, R.T.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. Nga, T.T.V., Duong, N.P., Hien, T.D.: Composition and magnetic studies of ultrafine Al-substituted Sr hexaferrite particles prepared by citrate sol–gel method. J. Magn. Magn. Mater. 324(6), 1141–1146 (2012)

    Article  ADS  Google Scholar 

  21. Mu, G., Chen, N., Pan, X., Shen, H., Gu, M.: Preparation and microwave absorption properties of barium ferrite nanorods. Mater. Lett. 62(6), 840–842 (2008)

    Article  Google Scholar 

  22. Wagner, T.: Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19. J. Solid State Chem. 136(1), 120–124 (1998)

    Article  ADS  Google Scholar 

  23. Khademi, F., Poorbafrani, A., Kameli, P., Salamati, H.: Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Nov. Magn. 25(2), 525–531 (2012)

    Article  Google Scholar 

  24. Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M = Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37(6), 1833–1837 (2011)

    Article  Google Scholar 

  25. Liu, M., Song, F., Shen, X., Zhu, Y.: Effects of strontium silicate on structure and magnetic properties of electrospun strontium ferrite nanofibers. J. Sol-Gel Sci. Technol. 56(1), 39–46 (2010). doi:10.1007/s10971-010-2270-1

    Article  Google Scholar 

  26. Ghasemi, A., Ekhlasi, S., Mousavinia, M.: Effect of Cr and Al substitution cations on the structural and magnetic properties of Ni0.6Zn0.4Fe2−xCrx/2Alx/2O4 nanoparticles synthesized using the sol–gel auto-combustion method. J. Magn. Magn. Mater. 354, 136–145 (2014)

    Article  ADS  Google Scholar 

  27. Zi, Z., Sun, Y., Zhu, X., Yang, Z., Song, W.: Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320(21), 2746–2751 (2008)

    Article  ADS  Google Scholar 

  28. Herme, C., Bercoff, P., Jacobo, S.: Nd–Co substituted strontium hexaferrite powders with enhanced coercivity. Mater. Res. Bull. 47(11), 3881–3887 (2012)

    Article  Google Scholar 

  29. Sahu, R.K., Mohanta, O., Pramanik, A.: XPS study on the correlation of magnetic properties and site occupancy of Al doped SrFe12O19. J. Alloys Compd. 532, 114–120 (2012)

    Article  Google Scholar 

  30. Went, J., Rathenau, G., Gorter, E., Van Oosterhout, G.: Ferroxdure, a class of new permanent magnet materials. Philips Tech. Rev. 13(194), 1951 (1952)

    Google Scholar 

  31. Özgür, Ü., Alivov, Y., Morkoç, H.: Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. Mater. Electron. 20(9), 789–834 (2009)

    Article  Google Scholar 

  32. Albanese, G.: Mössbauer investigation of aluminium substituted barium hexaferrite in the paramagnetic state. J. Magn. Magn. Mater. 147(3), 421–426 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. Goldman, A.: Modern Ferrite Technology, 2nd edn. Springer, US (2006)

    Google Scholar 

  34. Albanese, G., Carbucicchio, M., Deriu, A.: Temperature dependence of the sublattice magnetizations in Al-and Ga-substituted M-type hexagonal ferrites. Phys. Status Solidi A 23(2), 351–358 (1974)

    Article  ADS  Google Scholar 

  35. Liu, X., Zhong, W., Yang, S., Yu, Z., Gu, B., Du, Y.: Influences of La 3 + substitution on the structure and magnetic properties of M-type strontium ferrites. J. Magn. Magn. Mater. 238(2), 207–214 (2002)

    Article  ADS  Google Scholar 

  36. Bottoni, G., Candolfo, D., Cecchetti, A., Giarda, L., Masoli, F.: The grinding effects on magnetization processes in Ba ferrite powders by rotational hysteresis. Phys. Status Solidi A 32(1), K47–K50 (1975)

    Article  ADS  Google Scholar 

  37. Stoner, E.C., Wohlfarth, E.: A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 240(826), 599–642 (1948)

    Article  ADS  MATH  Google Scholar 

  38. Muth, P., Wohlfarth, E.P. (eds.): Ferromagnetic Materials, vol. 3. North-Holland Publ. Co., Amsterdam (1983). 1982. Crystal Research and Technology 18(9):1180-1180

    Google Scholar 

  39. De Bitetto, D.: Anisotropy fields in hexagonal ferrimagnetic oxides by ferrimagnetic resonance. J. Appl. Phys. 35(12), 3482–3487 (1964)

    Article  ADS  Google Scholar 

  40. Kazin, P., Trusov, L., Zaitsev, D., Tretyakov, Y.D., Jansen, M.: Formation of submicron-sized SrFe12−x AlxO19 with very high coercivity. J. Magn. Magn. Mater. 320(6), 1068–1072 (2008)

    Article  ADS  Google Scholar 

  41. Choi, D.H., Lee, S.W., An, S.Y., Park, S.-I., Shim, I.-B., Kim, C.S.: Mossbauer studies and magnetic properties of BaFe12−x AlxO19 grown by a wet chemical process. IEEE Trans. Magn. 39(5), 2884–2886 (2003)

    Article  ADS  Google Scholar 

  42. Buschow, K.H.J., Boer, F.R.: Physics of Magnetism and Magnetic Materials. Springer (2003)

  43. Kittel, C.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70(11–12), 965 (1946)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkian, S., Ghasemi, A., ShojaRazavi, R. et al. Structural and Magnetic Properties of High Coercive Al-Substituted Strontium Hexaferrite Nanoparticles. J Supercond Nov Magn 29, 1627–1640 (2016). https://doi.org/10.1007/s10948-016-3450-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3450-1

Keywords

Navigation