Skip to main content
Log in

M-Type Strontium Hexaferrite Nanoparticles Prepared by Sol-Gel Auto-combustion Method: The Role of Co Substitution in Structural, Morphological, and Magnetic Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, the sol-gel auto-combustion method has been successfully used to prepare nanocrystalline strontium hexaferrite doped with cobalt at iron sites (SrFe12−x Cox O 19, x = 0–1). The crystal structure, morphology, and magnetic properties of samples were systematically investigated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM), respectively. The three vibrational modes were observed in the FT-IR spectra of calcined samples, which indicated the presence of metal-oxygen stretching bands in hexaferrite structure after calcination treatment. The XRD results confirmed the single-phase M-type hexagonal structure for SrFe12−x Cox O 19 samples with x≤ 0.5; however, for the samples with x> 0.5, the cubic CoFe2 O 4 phase was also appeared. The average particle size determined by TEM analysis was found to be about 87 nm (for x = 0) and 110 nm (for x = 1) whereas the cobalt substitution leads to the larger particles. The saturation magnetization increased with cobalt content up to x = 0.5 and then decreased slowly on further increase of the dopant concentration, while the coercivity decreased continuously with increasing Co content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Went, J.J., Ratheneau, G.W., Gorter, E.W., Van Oosterhout, G.W.: Ferroxdure, a class of new permanent magnet materials. Philips Tech. Rev. 13, 194–208 (1951)

  2. Dho, J., Lee, E.K., Park, J.Y., Hur, N.H.: Effects of the grain boundary on the coercivity of barium ferrite BaFe12 O 19. J. Magn. Magn. Mater 285 (2005)

  3. Iqbal, M.J., Ashiq, M.N., Hernandez-Gomez, P., Munoz, J.M.: Synthesis, physical, magnetic and electrical properties of Al-Ga substituted co-precipitated nanocrystalline strontium hexaferrite. J. Magn. Magn. Mater 320, 881–886 (2008)

    Article  ADS  Google Scholar 

  4. Pullar, R.C.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci 57, 1191–1334 (2012)

    Article  Google Scholar 

  5. Ashiq, M.N., Iqbal, M.J., Najam-ul-Haq, M., Hernandez Gomez, P., Qureshi, A.M.: Synthesis, magnetic and dielectric properties of Er-Ni doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave devices. J. Magn. Magn. Mater 324, 15–19 (2012)

    Article  ADS  Google Scholar 

  6. Mousavi Ghahfarokhi, S.E., Hosseini, S., Zargar Shoushtari, M.: Fabrication of SrFe12−xNix O 19 nanoparticles and investigation on their structural, magnetic and dielectric properties. Int. J. Miner., Metall. Mater 22 (2015)

  7. Shirtcliffe, N.J., Thompson, S., O’Keefe, E.S., Appleton, S., Perry, C.C.: Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Mater. Res. Bull. 42, 281–287 (2007)

    Article  Google Scholar 

  8. Mousavi Ghahfarokhi, S.E., Ranjbar, F., Zargar Shoushtari, M.: A study of the properties of SrFe12−xCox O 19 nanoparticles. J. Magn. Magn. Mater 349 (2014)

  9. Iqbal, M.J., Ashiq, M.N., Hernandez-Gomez, P., Munoz, J.M.: Magnetic, physical and electrical properties of Zr-Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scr. Mater 57, 1093–1096 (2007)

    Article  Google Scholar 

  10. Mozaffari, M., Arab, A., Yousefi, M.H., Amighian, J.: Preparation and investigation of magnetic properties of MnNiTi-substituted strontium hexaferrite nanoparticles. J. Magn. Magn. Mater 322, 2670–2674 (2010)

    Article  ADS  Google Scholar 

  11. Martirosyan, K.S., Galstyan, E., Hossain, S.M., Wang, Y.J., Litvinov, D.: Barium hexaferrite nanoparticles: synthesis and magnetic properties. Mater. Sci. Eng. B 176, 8–13 (2011)

    Article  Google Scholar 

  12. Alamolhoda, S., Seyyed Ebrahimi, S.A., Badiei, A.: A study on the formation of strontium hexaferrite nanopowder by a sol-gel auto-combustion method in the presence of surfactant. J. Magn. Magn. Mater 303, 69–72 (2006)

    Article  ADS  Google Scholar 

  13. Song, F., Shen, X., Xiang, J., Zhu, Y.: Characterization and magnetic properties of BaxSr1−xFe12 O 19 (x =0-1) ferrite hollow fibers via gel-precursor transformation process. J. Alloy. Compd 507, 297–301 (2010)

    Article  Google Scholar 

  14. Liu, Y., Drew, M.G.B., Liu, Y.: Preparation and magnetic properties of barium ferrites substituted with manganese, cobalt, and tin. J. Magn. Magn. Mater 323, 945–953 (2011)

    Article  ADS  Google Scholar 

  15. Seifert, D., Töpfer, J., Stadelbauer, M., Grossinger, R., Le Breton, J.M.: Rare-earth-substituted S1−xLnxFe12 O 19 hexagonal ferrites. J. Am. Ceram. Soc 94 (2011)

  16. Chen, D.H., Chen, Y.Y.: Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid. Mater. Res. Bull. 37, 801–810 (2002)

    Article  Google Scholar 

  17. Mirkazemi, S.M., Alamolhoda, S., Ghiami, Z.: Microstructure and magnetic properties of SrFe12 O 19 nano-sized powders prepared by sol-gel auto-combustion method with CTAB surfactant. J. Supercond. Novel Magn. 28, 1543–1549 (2015)

    Article  Google Scholar 

  18. Sutka, A., Mezinskis, G.: Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6, 128–141 (2012)

    Article  Google Scholar 

  19. Davoodi, A., Hashemi, B.: Magnetic properties of Sn-Mg substituted strontium hexaferrite nanoparticles synthesized via coprecipitation method. J. Alloy. Compd. 509, 5893–5896 (2011)

    Article  Google Scholar 

  20. Iqbal, M.J., Farooq, S.: Enhancement of electrical resistivity of Sr0.5Ba0.5Fe12 O 19 nanomaterials by doping with lanthanum and nickel. Mater. Chem. Phys. 118, 308–313 (2009)

    Article  Google Scholar 

  21. Xie, T., Xu, L., Liu, C.: Synthesis and properties of composite magnetic material SrCoxFe12−x O 19 (x = 0-0.3). Powder Technol. 232, 87–92 (2012)

    Article  Google Scholar 

  22. Zargar Shoushtari, M., Mousavi Ghahfarokhi, S.E., Ranjbar, F.: A study of the morlogical properties of SrFe12−xCox O 19 (x = 0, 0.1, 0.2) hexaferrite nanoparticles. J. Supercond. Novel Magn. 28, 1601–1609 (2015)

    Article  Google Scholar 

  23. Ebrahimi, Y., Sabbagh Alvani, A.A., Sarabi, A.A., Sameie, H., Salimi, R., Sabbagh Alvani, M., Moosakhani, S.: A comprehensive study on the magnetic properties of nanocrystalline SrCo0.2Fe11.8 O 19 ceramics synthesized via diverse routes. Ceram. Int. 38, 3885–3892 (2012)

    Article  Google Scholar 

  24. Liu, X.S., Fernandez-Garcia, L., Hu, F., Zhu, D.R., Suarez, M., Menendez, J.L.: Magneto-optical Kerr spectra and magnetic properties of Co-substituted M-type strontium ferrites. Mater. Chem. Phys. 133, 961–964 (2012)

    Article  Google Scholar 

  25. Altaf, F., Atiq, S., Riaz, S., Naseem, S.: Optimizing the preparation conditions of Co-doped SrFe12 O 19 and investigating its structural and dialectical properties. Sci. Int. 25, 56–62 (2013)

    Google Scholar 

  26. Mousavi Ghahfarokhi, S.E., Ranjbar, F., Zargar Shoushtari, M.: A study of the properties of SrFe12−xCox O 19 nanoparticles. J. Magn. Magn. Mater 349 (2014)

  27. Sarhaddi, R., Shahtahmasebi, N., Rezaee Rokn-Abadi, M., Bagheri-Mohagheghi, M.M.: Effect of post-annealing temperature on nano-structure and energy band gap of indium tin oxide (ITO) nano-particles synthesized by polymerizing-complexing sol-gel method. Phys. E 43, 452–457 (2010)

    Article  Google Scholar 

  28. Xiao, S.H., Jiang, W.F., Li, L.Y., Li, X.J.: Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater. Chem. Phys. 106, 82–87 (2007)

    Article  Google Scholar 

  29. Masoudpanah, S.M., Seyyed Ebrahimi, S.A.: Effect of citric acid content on the structural and magnetic properties of SrFe12 O 19 thin films. Thin Solid Films 520, 199–203 (2011)

    Article  ADS  Google Scholar 

  30. Zhang, W., Tang, H., Peng, B., Zhang, W.: Influence of citric acid on the morphology and magnetic properties of barium ferrite thin films. Appl. Surf. Sci. 257, 176–179 (2010)

    Article  ADS  Google Scholar 

  31. Sivakumar, M., Gedanken, A., Zhong, W., Du, Y.W., Bhattacharya, D., Yeshurun, Y., Felner, I.: Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5. J. Magn. Magn. Mater 268, 95–104 (2004)

    Article  ADS  Google Scholar 

  32. Rane, M.V., Bahadur, D., Srivastava, C.M.: Fourier transform-infrared studies of non-stoichiometric Ni-Zr substituted barium ferrite. J. Phys. D: Appl. Phys. 32, 2001–2005 (1999)

    Article  ADS  Google Scholar 

  33. Zhao, W., Wei, P., Cheng, H.B., Tang, X.F., Zhang, Q.J.: FTIR Spectra, lattice shrinkage, and magnetic properties of CoTi-substituted M-Type barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 90, 2095–2103 (2007)

    Article  Google Scholar 

  34. Singhal, S., Namgyal, T., Singh, J., Chandra, K., Bansal, S.: A comparative study on the magnetic properties of MFe12 O 19 and MAlFe11 O 19 (M =Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37, 1833–1837 (2011)

    Article  Google Scholar 

  35. Xiang, J., Shen, X.Q., Song, F.Z., Liu, M.Q.: One-dimensional NiCuZn ferrite nanostructures: fabrication, structure, and magnetic properties. J. Solid State Chem. 183, 1239–1244 (2010)

    Article  ADS  Google Scholar 

  36. Kong, S., Zhang, P., Wen, X., Pi, P., Cheng, J., Yang, Z., Hai, J.: Influence of surface modification of SrFe12 O 19 particles with oleic acid on magnetic microsphere preparation. Particuology 6, 185–190 (2008)

    Article  Google Scholar 

  37. Roohani, E., Arabi, H., Sarhaddi, R., Sudkhah, S., Shabani, A.: Effect of annealing temperature on structural and magnetic properties of strontium hexaferrite nanoparticles synthesized by sol-gel auto-combustion method. Int. J. Mod. Phys. B 29, 1550190 (2015)

  38. Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., dai, J.M., Song, W.H.: Structural and magnetic properties of SrFe12 O 19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater 320, 2746–2751 (2008)

    Article  ADS  Google Scholar 

  39. Tyagi, S., Baskey, H.B., Agarwala, R.C., Agarwala, V., Shami, T.C.: Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram. Int. 37, 2631–2641 (2011)

    Article  Google Scholar 

  40. Ashiq, M.N., Iqbal, M.J., Gul, I.: Effect of Al-Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater 323, 259–263 (2011)

    Article  ADS  Google Scholar 

  41. Liu, Y., Drew, M.G.B., Liu, Y., Wang, J., Zhang, M.: Preparation and magnetic properties of La-Mn and La-Co doped barium hexaferrites prepared via an improved co-precipitation/molten salt method. J. Magn. Magn. Mater 322, 3342–3345 (2010)

    Article  ADS  Google Scholar 

  42. Kojima, H., Wohlfarth, E.P.: Ferromagnetic Materials, vol. 3, pp 305–391, North-Holland (1982)

  43. Verstegen, J.M.P.J., Stevels, A.L.N.: The relation between crystal structure and luminescence in β-alumina and magnetoplumbite phases. J. Lumin. 9, 406–414 (1974)

    Article  Google Scholar 

  44. Liu, M., Shen, X., Song, F., Xiang, J., Meng, X.: Microstructure and magnetic properties of electrospun one-dimensional Al 3+-substituted SrFe12 O 19 nanofibers. J. Solid State Chem. 184, 871–876 (2011)

    Article  ADS  Google Scholar 

  45. Ketov, S.V., Yagodkin, Y.D., Menushenkov, V.P.: Structure and magnetic properties of strontium ferrite anisotropic powder with nanocrystalline structure. J. Alloy. Compd. 510, 1065–1068 (2011)

    Article  Google Scholar 

  46. Doroftei, C., Rezlescu, E., Popa, P.D., Rezlescu, N.: Microstructure and humidity sensitive properties of MgFe2 O 4 ferrite with Sn and Mo substitutions prepared by selfcombustion method. J. Optoelectron. Adv. Mater 8, 1012–1015 (2006)

    Google Scholar 

  47. Rostami, M., Moradi, M., Shams Alam, R., Mardani, R.: Effect of substitution of Mn, Cu, and Zr on the structural, magnetic, and Ku-band microwave-absorption properties of strontium hexaferrite nanoparticles. J. Electron. Mater., 4154–4161 (2016)

  48. Khorrami, S., Gharib, F., Mahmoudzadeh, G., Sadat Sepehr, S., Sadat Madani, S., Naderfar, N., Manie, S.: Synthesis and characterization of nanocrystalline spinel Zinc ferrite prepared by sol-gel auto-combustion technique. Int. J. Nano. Dim. 1, 221–224 (2011)

    Google Scholar 

  49. Feng, Q., Ma, X.H., Yan, Q.Z., Ge, C.C.: Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process. Mater. Sci. Eng. B 162, 53–58 (2009)

    Article  Google Scholar 

  50. Durmus, Z.: A Comparative study on magnetostructural properties of barium hexaferrite powders prepared by polyethylene glycol. J. Nanomater., 1–7 (2014)

  51. Sharbati, A., Choopani, S., Mousavi Azar, A., Senna, M.: Structure and electromagnetic behavior of nanocrystalline in the 8-12 GHz frequency range. Solid State Commun. 150, 2218–2222 (2010)

    Article  ADS  Google Scholar 

  52. Mendoza-Suárez, G., Rivas-Vázquez, L.P., Corral-Huacuz, J.C., Fuentes, A.F., Escalante-Garcia, J.I.: Magnetic properties and microstructure of BaFe11.6−2xTix M x O 19 (M =Co, Zn, Sn) compounds. Physica B 339, 110–118 (2003)

    Article  ADS  Google Scholar 

  53. Singh, C., Bindra Narang, S., Hudiara, I.S., Bai, Y., Tabatabaei, F.: Static magnetic properties of Co and Ru substituted Ba-Sr ferrite. Mater. Res. Bull. 43, 176–184 (2008)

    Article  Google Scholar 

  54. Bercoff, P.G., Herme, C., Jacobo, S.E.: The influence of Nd-Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles. J. Magn. Magn. Mater 321, 2245–2250 (2009)

    Article  ADS  Google Scholar 

  55. Ansari, S., Arabi, H., Alavi Sadr (Zareii), S.M.: Structural, morphological, optical and magnetic properties of Al-doped CoFe2 O 4 nanoparticles prepared by sol-gel auto-combustion method. J. Supercond. Novel Magn. 29 (2016)

  56. Gairola, S.P., Verma, V., Singh, A., Purohit, L.P., Kotnala, R.K.: Modified composition of barium ferrite to act as a microwave absorber in X-band frequencies. Solid State Commun. 150, 147–151 (2010)

    Article  ADS  Google Scholar 

  57. Kumar, L., Kumar, P., Kar, M.: Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystalline Co12xMnxFe2−2xMn2x O 4. Appl. Nanosci. 3, 75–82 (2013)

    Article  ADS  Google Scholar 

  58. Li, Y., Liu, R., Zhang, Z., Xiong, C.: Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8 M 0.8 O 19 particles. Mater. Chem. Phys. 64, 256–259 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the “Iranian Nanotechnology Initiative Council” for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Roohani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohani, E., Arabi, H., Sarhaddi, R. et al. M-Type Strontium Hexaferrite Nanoparticles Prepared by Sol-Gel Auto-combustion Method: The Role of Co Substitution in Structural, Morphological, and Magnetic Properties. J Supercond Nov Magn 30, 1599–1608 (2017). https://doi.org/10.1007/s10948-016-3966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3966-4

Keywords

Navigation