Skip to main content
Log in

Third Order Elastic Constants and Debye Temperature of MgB2 Under Different Pressure: First-Principles Methods

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of superconducting MgB2 are investigated by first principles methods combined with homogeneous deformation theory. The Anderson-Grüneisen parameter is obtained from the SOECs and TOECs. The obtained value is 2.13, that is in consistent with the experimental result. The effective elastic constants and Debye temperature are also predicted from SOECs and TOECs, which increase with the increasing of pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kortus, J., Mazin, I.I., Belashchenko, K.D., Antropov, V.P., Boyer, L.L.: Phys. Rev. Lett. 86, 4656 (2001)

    Article  ADS  Google Scholar 

  2. Nagamatsu, J., Nakagawa, N., Muranaka, T., et al.: Nature (London) 63, 410 (2001)

    Google Scholar 

  3. Ru̇žička, J., Prachařová, J.: Czech. J. Phys. B 38, 794–801 (1988)

    Article  ADS  Google Scholar 

  4. Vogt, T., Schneider, G., Hriljac, J.A., Yang, G., Abell, J.S.: Phys. Rev. B 63, 220505(R) (2001)

    Article  ADS  Google Scholar 

  5. Tomita, T., Hamlin, J.J., Shilling, J.S., Hinks, D.G., Jorgensen, J.D.: Phys. Rev. B 64, 092505

  6. Ravindran, P., Vajeston, P., Vidya, R., et al.: Phys. Rev. Lett. 86, 2420–2422 (2001)

    Article  Google Scholar 

  7. Du, W., Zhang, H.B., Xu, D., et al.: Supercond. Sci. Technol. 18, 1513–1516 (2005)

    Article  ADS  Google Scholar 

  8. Serquis, A., Zhu, Y.T., Peterson, E.J., et al.: Appl. Phys. Lett. 79, 4399–4401 (2001)

    Article  ADS  Google Scholar 

  9. Feng, H.F., Wu, X.Z., Gan, L.Y., Wang, R., Wei, Q.Y.: J. Supercond. Nov. Magn. 26, 3401–3409 (2013)

    Article  Google Scholar 

  10. Winey, J.M., Gupta, Y.M.: J. Appl. Phys. 96, 1993 (2004)

    Article  ADS  Google Scholar 

  11. Winey, J.M., Gupta, Y.M.: J. Appl. Phys. 99, 023510 (2006)

    Article  ADS  Google Scholar 

  12. Barua, B.P., Sinha, S.K.: J. Appl. Phys. 49, 3967 (1978)

    Article  ADS  Google Scholar 

  13. Chantasiriwan, S., Milstein, F.: Phys. Rev. B 58, 5996 (1998)

    Article  ADS  Google Scholar 

  14. Wang, H.Y., Chen, X.R., Zhu, W.J., Cheng, Y.: Phys. Rev. B 72, 172502(1-4) (2005)

    ADS  Google Scholar 

  15. Wallace, D.C.: In: Seitz, F., Turnbull, D. (eds.) Solid State Physics. Academic, New York (1970)

  16. Hiki, Y.: Annu. Rev. Mater. Sci. 11, 51 (1981)

    Article  ADS  Google Scholar 

  17. Thurston, R.N.: In: Mason, W.P., Thurston, R.N. (eds.) Physical acoustics principles and methods. Academic, New York (1964)

  18. Ramji Rao, R.: Phys. Rev. B 10, 4173 (1974)

    Article  ADS  Google Scholar 

  19. Kresse, G., Hafner, J.: Phys. Rev. B 49, 14251–14269 (1994)

    Article  ADS  Google Scholar 

  20. Kresse, G., Furthmller, J.: Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  21. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 38653868 (1996)

    Article  Google Scholar 

  22. Blöchl, P.E.: Phys. Rev. B50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  23. Kresse, G., Joubert, D.: Phys. Rev. B59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  24. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. Islam, A.K.M.A., Islan, F.N.: Physica C 363, 189–193 (2001)

    Article  ADS  Google Scholar 

  26. Thurston, R., Brugger, K.: Phys. Rev. 133, A1604 (1964)

    Article  ADS  Google Scholar 

  27. Brugger, K.: Phys. Rev. 133, A1611 (1964)

    Article  ADS  Google Scholar 

  28. Murnaghan, F.D.: Finite deformation of an elastic solid. Wiley, New York (1951)

    MATH  Google Scholar 

  29. Guo, H.Z., Chen, X.R., Cai, L.C., Zhu, J., Gao, J.: Solid State Commun. 134, 787–790 (2005)

    Article  ADS  Google Scholar 

  30. Ramji Rao, R., Srinivasan, T.: Phys. Status Solidi 31, K39 (1969)

    Article  ADS  Google Scholar 

  31. Brugger, K.: J. App. Phys. 36, 768 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  32. Xu, M., Kitazawa, H., Takano, Y., Ye, J., Nishida, K.: Appl. Phys. Lett. 79, 2779–2781 (2001)

    Article  ADS  Google Scholar 

  33. Lee, S., Mori, H., Masui, T., Eltsev, Y., Yamamoto, A., Tajima, S.: J. Phys. Soc. Jpn. 70, 2255–2258 (2001)

    Article  ADS  Google Scholar 

  34. Jung, C.U., Park, M.S., Kang, W.N., Kim, M.S., et al.: Physica C 353, 162 (2001)

    Article  ADS  Google Scholar 

  35. Anderson, O.L., Phys, J.: Chem. Soilds 24, 909 (1963)

    Article  ADS  Google Scholar 

  36. Schreiber, E., Anderson, O.L., Soga, N.: Elastic constants and their measurement. McGraw- Hill, New York (1973)

    Google Scholar 

  37. Amelinckx, S.: The direct observation of dislocations. Academic Press, New York and London (1964)

    MATH  Google Scholar 

  38. Cristina, B., Tsutomu, Y.: Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (11104361), State Key Laboratory of Coal Mine Disaster Dynamics and Control in Chongqing University (2011DA105287FW201210), and the Fundamental Research Funds for the Central Universities(CDJZR14328801)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Wu.

Appendix

Appendix

$$ \eta_{ij}= \left( \begin{array}{ccc} \xi & 0 & 0\\ 0 & 0 & 0\\ 0 &0 & 0\\ \end{array} \right), $$
(20)
$$ \eta_{ij}= \left( \begin{array}{ccc} \xi & 0 & 0\\ 0 & \xi & 0\\ 0 &0 & 0\\ \end{array} \right), $$
(21)
$$ \eta_{ij}= \left( \begin{array}{ccc} \xi & 0 & 0\\ 0 &\xi & 0\\ 0 &0 &\xi\\ \end{array} \right), $$
(22)
$$ \eta_{ij}= \left( \begin{array}{ccc} 0 & 0 & 0\\ 0 &\xi & 0\\ 0 &0 &0\\ \end{array} \right), $$
(23)
$$ \eta_{ij}= \left( \begin{array}{ccc} 0 & 0 & 0\\ 0 &0 & 0\\ 0 &0 &\xi\\ \end{array} \right), $$
(24)
$$ \eta_{ij}= \left( \begin{array}{ccc} 0 & 0 & 0\\ 0 &\xi & 0\\ 0 &0 &\xi\\ \end{array} \right), $$
(25)
$$ \eta_{ij}= \left( \begin{array}{ccc} 0 & 0 & \xi\\ 0 &\xi & 0\\ \xi &0 &0\\ \end{array} \right), $$
(26)
$$ \eta_{ij}= \left( \begin{array}{ccc} 0 & 0 & \xi\\ 0 &0 & 0\\ \xi &0 &\xi\\ \end{array} \right), $$
(27)
$$ \eta_{ij}= \left( \begin{array}{ccc} \xi & 0 & 0\\ 0 &0 & \xi\\ 0 &\xi &\xi\\ \end{array} \right), $$
(28)
$$ \eta_{ij}= \left( \begin{array}{ccc} \xi & 0 & \xi\\ 0 &\xi & 0\\ \xi &0 &0\\ \end{array} \right), $$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wu, X., Li, W. et al. Third Order Elastic Constants and Debye Temperature of MgB2 Under Different Pressure: First-Principles Methods. J Supercond Nov Magn 28, 1483–1489 (2015). https://doi.org/10.1007/s10948-014-2927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2927-z

Keywords

Navigation