Skip to main content
Log in

The Elastic Properties, Generalized Stacking Fault Energy and Dissociated Dislocations in MgB2 Under Different Pressure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The \(\langle11\overline{2}0\rangle\) perfect dislocation in MgB2 is suggested to dissociate into two partial dislocations in an energy favorable way \(\langle11\overline{2}0\rangle\rightarrow\frac{1}{2}\langle11\overline{2}0\rangle +\mathrm{SF}+\frac{1}{2}\langle11\overline{2}0\rangle\). This dissociation style is a correction of the previous dissociation \(\langle1000\rangle\rightarrow\frac{1}{3}\langle1\overline{1}00\rangle+\mathrm{SF}+\frac{1}{3}\langle2100\rangle\) proposed by Zhu et al. to model the partial dislocations and stacking fault observed by transmission electron microscopy. The latter dissociation results in a maximal stacking fault energy rather than a minimal one according to the generalized stacking fault energy calculated from first-principles methods. Furthermore, the elastic constants and anisotropy of MgB2 under different pressure are investigated. The core structures and mobilities of the \(\langle11\overline{2}0\rangle\) dissociated dislocations are studied within the modified Peierls–Nabarro (P–N) dislocation theory. The variational method is used to solve the modified P–N dislocation equation and the Peierls stress is also determined under different pressure. High pressure effects on elastic anisotropy, core structure and Peierls stress are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu, Y., Wu, L., Volkov, V., et al.: Physica C 356, 239–253 (2001)

    Article  ADS  Google Scholar 

  2. Nagamatsu, J., Nakagawa, N., Muranaka, T., et al.: Nature (London) 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  3. Chen, X.K., Konstantinovic, M.J., Irvin, J.C., et al.: Phys. Rev. Lett. 87, 157002 (2001)

    Article  ADS  Google Scholar 

  4. Liu, A.Y., Mazin, I.I., Kortus, J.: Phys. Rev. Lett. 87, 087005 (2001)

    Article  ADS  Google Scholar 

  5. Finnemore, D.K., Ostenson, J.E., Bud’ko, S.L., et al.: Phys. Rev. Lett. 86, 2420–2422 (2001)

    Article  ADS  Google Scholar 

  6. Ravindran, P., Vajeeston, P., Vidya, R., et al.: Phys. Rev. B 64, 224509 (2001)

    Article  ADS  Google Scholar 

  7. Du, W., Zhang, H.B., Xu, D., et al.: Supercond. Sci. Technol. 18, 1513–1516 (2005)

    Article  ADS  Google Scholar 

  8. Serquis, A., Zhu, Y.T., Peterson, E.J., et al.: Appl. Phys. Lett. 79, 4399–4401 (2001)

    Article  ADS  Google Scholar 

  9. Yan, Y.F., Al-Jassim, M.M.: Phys. Rev. B 66, 052502 (2002)

    Article  ADS  Google Scholar 

  10. Wang, S.F.: Phys. Rev. B 65, 094111 (2002)

    Article  Google Scholar 

  11. Wang, S.F.: J. Phys. A, Math. Theor. 41, 015005 (2008)

    Article  Google Scholar 

  12. Wang, S.F.: J. Phys. A, Math. Theor. 42, 025208 (2009)

    Article  ADS  Google Scholar 

  13. Liu, L., Wu, X.Z., Wang, R., et al.: Eur. Phys. J. B 85, 226 (2012)

    Article  ADS  Google Scholar 

  14. Kresse, G., Hafner, J.: Phys. Rev. B 47, 558–561 (1993)

    Article  ADS  Google Scholar 

  15. Kresse, G., Hafner, J.: Phys. Rev. B 49, 14251–14269 (1994)

    Article  ADS  Google Scholar 

  16. Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  17. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 38653868 (1996)

    Article  Google Scholar 

  18. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 78, 891 (1998)

    Article  ADS  Google Scholar 

  19. Blöchl, P.E.: Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  20. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  21. Holzwarth, N.A., Matthews, G., Dunning, R., et al.: Phys. Rev. B 55, 2005–2017 (1997)

    Article  ADS  Google Scholar 

  22. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  23. Vogt, T., Schneider, G., Hriljac, J.A., et al.: Phys. Rev. B 63, 220505(R) (2001)

    Article  ADS  Google Scholar 

  24. Guo, H.Z., Chen, X.R., Cai, L.C., Zhu, J., Gao, J.: Solid State Commun. 134, 787–790 (2005)

    Article  ADS  Google Scholar 

  25. Osorio-Guillen, J.M., Simak, S.L., Wang, Y., et al.: Solid State Commun. 123, 257–262 (2002)

    Article  ADS  Google Scholar 

  26. Islam, A.K.M.A., Islam, F.N.: Physica C 363, 189–193 (2001)

    Article  ADS  Google Scholar 

  27. Wang, H.Y., Chen, X.R., Zhu, W.J., Cheng, Y.: Phys. Rev. B 72, 172502 (2005)

    Article  ADS  Google Scholar 

  28. Ravindran, P., Fast, L., Korzhavyi, P.A., et al.: J. Appl. Phys. 84, 4891–4904 (1998)

    Article  ADS  Google Scholar 

  29. Goncharov, A.F., Struzhkin, V.V., Gregoryanz, E., et al.: Phys. Rev. B 64, 100509(R) (2001)

    Article  ADS  Google Scholar 

  30. Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 1. Wiley, New York (1973)

    Google Scholar 

  31. Steinle-Neumann, G., Stixrude, L., Cohen, R.E.: Phys. Rev. B 60, 791–799 (1999)

    Article  ADS  Google Scholar 

  32. Peierls, R.E.: Proc. Phys. Soc. 52, 34–37 (1940)

    Article  ADS  Google Scholar 

  33. Nabarro, F.R.N.: Proc. Phys. Soc. 59, 256–272 (1947)

    Article  ADS  Google Scholar 

  34. Schoeck, G.: Mater. Sci. Eng. A 400–401, 7–17 (2005)

    Article  Google Scholar 

  35. Ferré, D., Carrez, P., Cordier, P.: Phys. Rev. B 77, 014106 (2008)

    Article  ADS  Google Scholar 

  36. Carrez, P., Ferré, D., Cordier, P.: Model. Simul. Mater. Sci. Eng. 17, 035010 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project Supported by the Natural Science Foundation of China (11104361) and Project No. CQDXWL2012015 supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, H., Wu, X., Gan, L. et al. The Elastic Properties, Generalized Stacking Fault Energy and Dissociated Dislocations in MgB2 Under Different Pressure. J Supercond Nov Magn 26, 3401–3409 (2013). https://doi.org/10.1007/s10948-013-2226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2226-0

Keywords

Navigation