Skip to main content
Log in

Fabrication and Magnetic Properties of Electrospun La0.7Sr0.3MnO3 Nanostructures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

La0.7Sr0.3MnO3 (abbreviated as LSMO) nanostructures were fabricated by a simple electrospinning using a solution that contained poly(vinylpyrrolidone) (PVP), lanthanum, strontium and manganese nitrates. The LSMO nanostructures were successfully obtained from calcination of the as-spun LSMO/PVP composite nanofibers at 500–900 °C in air for 7 h. The as-spun and calcined LSMO/PVP composite nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Analysis of phase composition by XRD revealed that all the calcined samples have a single rhombohedral LSMO phase. The SEM results showed that the crystal structure and morphology of the LSMO nanofibers were affected by the calcination temperature. Crystallite size of the nanoparticles contained in nanofibers increased with an increase in calcination temperature. The specific saturation magnetization (M s ) values were obtained to be 1.23, 28.61, and 40.52 emu/g at 10 kOe for the LSMO samples calcined respectively at 500, 700, and 900 °C. It is found that the increase of the tendency of M s is consistent with the enhancement of crystallinity, and the values of M s for the calcined LSMO samples were observed to increase with increasing crystallite size. This increase in M s for the calcined LSMO samples with increasing crystallite size may be explained by considering a magnetic domain of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Helmolt, R.V., Wocker, J., Holzapfel, B., Schultz, M., Samwer, K.: Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  2. Balcells, L.I., Enrich, R., Mora, J., Calleja, A., Fontcuberta, J., Obradors, X.: Appl. Phys. Lett. 69, 1486 (1996)

    Article  ADS  Google Scholar 

  3. Wang, H., Zhang, X., Hundley, M.F., Thompson, J.D., Gibbons, B.J., Lin, Y., Arendt, P.N., Foltyn, S.R., Jia, Q.X.: Appl. Phys. Lett. 84, 1147 (2004)

    Article  ADS  Google Scholar 

  4. Bowen, M., Bibes, M., Barthélémy, A., Contour, J.P., Anane, A., Fert, A.: Appl. Phys. Lett. 82, 233 (2003)

    Article  ADS  Google Scholar 

  5. Desfeux, R., Bailleul, S., Costa, A.D., Prellier, W., Haghiri-Gosnet, A.M.: Appl. Phys. Lett. 78, 3681 (2001)

    Article  ADS  Google Scholar 

  6. Urishibara, A., Morimoto, Y., Arima, T., Asamitsu, A., Kido, K., Tokura, Y.: Phys. Rev. B 51, 14103 (1995)

    Article  ADS  Google Scholar 

  7. Bibes, M., Barthélémy, A.: IEEE Trans. Electron Devices 54, 1003 (2007)

    Article  ADS  Google Scholar 

  8. Jooss, Ch., Wu, L., Beetz, T., Klie, R.F., Beleggia, M., Schofield, M.A., Schramm, S., Hoffmann, J., Zhu, Y.: Proc. Natl. Acad. Sci. USA 104, 13597 (2007)

    Article  ADS  Google Scholar 

  9. Choi, S., Chung, M.-H.: Semin. Integr. Med. 1, 53 (2003)

    Article  Google Scholar 

  10. Hua, Z.H., Chen, R.S., Li, C.L., Yang, S.G., Lu, M., Gu, X.B., Du, Y.W.: J. Alloys Compd. 427, 199 (2007)

    Article  Google Scholar 

  11. Ji, G., Tang, S., Xu, B., Gu, B., Du, Y.: Chem. Phys. Lett. 379, 484 (2003)

    Article  ADS  Google Scholar 

  12. Huang, Z.H., Zhang, Y.Z., Kotaki, M., Ramakrishna, S.: Compos. Sci. Technol. 63, 2223 (2003)

    Article  Google Scholar 

  13. Reneker, D.H., Yarin, A.L., Fong, H., Koombhonge, S.: J. Appl. Phys. 87, 4531 (2000)

    Article  ADS  Google Scholar 

  14. Naunsing, S., Ninmuang, S., Jarernboon, W., Maensiri, S., Seraphin, S.: Mater. Sci. Eng. B 131, 147 (2006)

    Article  Google Scholar 

  15. Maensiri, S., Nuansing, W.: Mater. Chem. Phys. 99, 104 (2006)

    Article  Google Scholar 

  16. Maensiri, S., Nuansing, W., Klinkaewnarong, J., Laokul, P., Khemprasit, J.: J. Colloid Interface Sci. 297, 578 (2006)

    Article  Google Scholar 

  17. Li, D., Herricks, T., Xia, Y.: Appl. Phys. Lett. 8, 4586 (2003)

    Article  ADS  Google Scholar 

  18. Saengmanee, M., Maensiri, S.: Appl. Phys. A 97, 167 (2009)

    Article  ADS  Google Scholar 

  19. Ju, Y.-W., Park, J.-H., Jung, H.-R., Cho, S.-J., Lee, W.-J.: Compos. Sci. Technol. 68, 1704 (2008)

    Article  Google Scholar 

  20. Maensiri, S., Sangmanee, M., Wiengmoon, A.: Nanoscale Res. Lett. 4, 221 (2009)

    Article  ADS  Google Scholar 

  21. Ponhan, W., Maensiri, S.: Solid State Sci. 11, 479 (2009)

    Article  ADS  Google Scholar 

  22. Ponhan, W., Swatsitang, E., Maensiri, S.: Mater. Sci. Technol. 26, 1298 (2010)

    Article  Google Scholar 

  23. Zhou, X., Zhao, Y., Cao, X., Xue, Y., Xu, D., Jiang, L., Su, W.: Mater. Lett. 62, 470 (2008)

    Article  Google Scholar 

  24. Philip, J., et al.: J. Appl. Phys. 109, 016109 (2011)

    Article  ADS  Google Scholar 

  25. Zhi, M., Koneru, A., Yang, F., Manivannan, A., Li, J., Wu, N.: Nanotechnology 23, 305501 (2012)

    Article  Google Scholar 

  26. Mathur, S., Shen, H.: J. Sol-Gel Sci. Technol. 25, 147 (2002)

    Article  Google Scholar 

  27. Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction, 3rd edn. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  28. Daengsakul, S., Thomas, C., Thomas, I., Mongkolkachit, C., Siri, S., Amornkitbamrung, V., Maensiri, S.: Nanoscale Res. Lett. 4, 839 (2009)

    Article  ADS  Google Scholar 

  29. Daengsakul, S., Mongkolkachit, C., Thomas, C., Siri, S., Thomas, I., Amornkitbamrung, V., Maensiri, S.: Appl. Phys. A 96, 691 (2009)

    Article  ADS  Google Scholar 

  30. Sánchez, R.D., Rivas, J., Vaqueiro, P., López-Quintela, M.A., Caeiro, D.: J. Magn. Magn. Mater. 247, 92 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Physics, Faculty of Science, Ubon Ratchathani University for providing XRD facility; Departments of Chemistry Faculty of Science, Khon Kaen University for providing VSM; and TMEC (NSTDA) for FE-SEM facilities. We would like to thank Prof. Supapan Seraphin and the University of Arizona for providing TEM facilities. R.Y. would like to thank the Commission on Higher Education, Thailand, for supporting by grant fund under the program Strategic Scholarships for Frontier Research Network for the Join Ph.D. Program Thai Doctoral degree for this research. This work is partially supported by the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its Program of Center of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yensano, R., Pinitsoontorn, S., Amornkitbamrung, V. et al. Fabrication and Magnetic Properties of Electrospun La0.7Sr0.3MnO3 Nanostructures. J Supercond Nov Magn 27, 1553–1560 (2014). https://doi.org/10.1007/s10948-013-2474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2474-z

Keywords

Navigation