Skip to main content
Log in

Influence of Quenched Disorder on the Structural Properties and Spin-Wave Excitations in Ferromagnetic Metallic Manganites (La1−x Nd x )2/3(Ca1−y Sr y )1/3MnO3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The influence of quenched disorder on the structural properties and on low-temperature field-dependent magnetization, in terms of the spin-wave theory, of (La1−x Nd x )2/3(Ca1−y Sr y )1/3MnO3 with J 1 (x=0,y=0); J 2 (x=0.05,y=0.04); J 3 (x=0.25,y=0.20); J 4 (x=0.3,y=0.24); J 5 (x=0.98,y=0.8) is investigated by characterizing a series of samples with the same A-site cational mean radius and the same average valence of the Mn ion but different A-site ionic radii variance. Our results demonstrate that moderate-small chemical disorder does not affect the crystallographic structure, but enhance the random local distortion of MnO6 octhaedra. Magnetization measurements show that the Curie temperature (T C ) decreases with disorder. The evolution of the saturation magnetization with the disorder cannot be deduced due to the possible contribution of the Nd spins to the total magnetic moment. The thermal evolution of magnetization in the ferromagnetic phase at low temperature varies as T 3/2, in accordance with Bloch’s law. The spin wave stiffness constant D obtained from the Bloch constant is found to decrease with the increase of disorder. We found that for the range of the study disorder, the magnetic behavior corresponds to a conventional ferromagnet, where T C should be proportional to D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siwatch, P.K., Siugh, H.K., Srivastava, O.N.: J. Phys. Condens. Matter 20, 273201 (2008)

    Article  ADS  Google Scholar 

  2. Zener, C.: Pyhs. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  3. de Gennes, G.P.: Phys. Rev. 118, 141 (1960)

    Article  ADS  Google Scholar 

  4. Anderson, P.W., Hasegawa, H.: Phys. Rev. 100, 675 (1955)

    Article  ADS  Google Scholar 

  5. Millis, J.A., Littlewood, B.P., Shraiman, I.B.: Phys. Rev. Lett. 74, 5144 (1995)

    Article  ADS  Google Scholar 

  6. Dagotto, E. (ed.): Nanoscale Phase Separation and Colossal Magnetoresistance. Springer, Berlin (2002)

    Google Scholar 

  7. Tokura, Y.: Rep. Prog. Phys. 69, 797 (2006)

    Article  ADS  Google Scholar 

  8. Rodriguez-Martinez, L.M., Attfield, J.P.: Phys. Rev. B 54(R1), 5622 (1996)

    Google Scholar 

  9. Tozri, A., Dhahri, E., Hlil, E.K.: J. Magn. Magn. Mater. 322, 2516 (2010)

    Article  ADS  Google Scholar 

  10. Wang, K.F., Yuan, F., Dong, S., Li, D., Zhang, Z.D., Ren, Z.F., Liu, J.-M.: Appl. Phys. Lett. 89, 222505 (2006)

    Article  ADS  Google Scholar 

  11. Padmanabhan, B., Elizabeth, S., Bhat, H.L., Rößler, S., Dörr, K., Müller, K.H.: J. Magn. Magn. Mater. 307, 288 (2006)

    Article  ADS  Google Scholar 

  12. Ghosh, N., Elizabeth, S., Bhat, H.L., Rößler, U.K., Nenkov, K., Rößler, S., Dörr, K., Müller, K.-H.: Phys. Rev. B 70, 184436 (2004)

    Article  ADS  Google Scholar 

  13. Ye, F., Dai, P., Fernandez-Baca, J.A., Sha, H., Lynn, J.W., Furukawa, H.K., Tomioka, Y., Tokura, Y., Zhang, J.: Phys. Rev. Lett. 96, 047204 (2006)

    Article  ADS  Google Scholar 

  14. Furkawa, N.: J. Phys. Soc. Jpn. 65, 1174 (1996)

    Article  ADS  Google Scholar 

  15. Dai, P., Hwang, H.Y., Zhang, J., Fernandez-Baca, J.A., Cheong, S.-W., Kloc, C., Tomioka, Y., Tokura, Y.: Phys. Rev. B 61, 9553 (2000)

    Article  ADS  Google Scholar 

  16. Chatterji, T., Regnault, L.P., Schmidt, W.: Phys. Rev. B 66, 214408 (2002)

    Article  ADS  Google Scholar 

  17. Furkawa, N.: J. Phys. Soc. Jpn. 68, 2522 (1999)

    Article  ADS  Google Scholar 

  18. Khaliullin, G., Kilian, R.: Phys. Rev. B 61, 3494 (2000)

    Article  ADS  Google Scholar 

  19. Motome, Y., Furkawa, N.: Phys. Rev. B 71, 014446 (2005)

    Article  ADS  Google Scholar 

  20. Shannon, R.D.: Acta Crystallogr., A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976)

    Article  ADS  Google Scholar 

  21. Young, R.A.: The Rietveld Method. Oxford University Press, New York (1993)

    Google Scholar 

  22. Kostogloudis, G.Ch., Vasilakos, N., Ftikos, Ch.: J. Eur. Ceram. Soc. 17, 1513 (1997)

    Article  Google Scholar 

  23. Rodriguez-Martinez, L.M., Attfield, J.P.: Phys. Rev. B 63, 024424 (2000)

    Article  ADS  Google Scholar 

  24. Meneghini, C., Levy, D., Mobilio, S., Ortolani, M., Nuñez-Reguero, M., Kumar, A., Sarma, D.D.: Phys. Rev. B 65, 012111 (2001)

    Article  ADS  Google Scholar 

  25. Sato, T.J., Lynn, J.W., Dabrowski, B.: Phys. Rev. Lett. 93, 267204 (2004)

    Article  ADS  Google Scholar 

  26. Fontcuberta, J., Laukhin, V., Obradors, X.: Appl. Phys. Lett. 72, 2607 (1998)

    Article  ADS  Google Scholar 

  27. Salafranca, J., Brey, L.: Phys. Rev. B 73, 214404 (2006)

    Article  ADS  Google Scholar 

  28. Furukawa, N., Motome, Y.: J. Phys. Soc. Jpn. 74, 203 (2005)

    Article  Google Scholar 

  29. Furukawa, N.: J. Phys. Soc. Jpn. 64, 2734 (1995)

    Article  ADS  Google Scholar 

  30. Rodriguez-Martinez, L.M., Attifield, J.P.: Phys. Rev. B 58, 2426 (1998)

    Article  ADS  Google Scholar 

  31. Ghosh, N., Elizabeth, S., Bhat, H.L., Subanna, G.N., Sahana, M.: J. Magn. Magn. Mater. 256, 286 (2003)

    Article  ADS  Google Scholar 

  32. Chang, Y.L., Huang, Q., Ong, C.K.: J. Appl. Phys. 91, 789 (2002)

    Article  ADS  Google Scholar 

  33. Gu, B.X., Zhang, S.Y., Zhang, H.C., Shen, B.G.: J. Magn. Magn. Mater. 204, 45 (1999)

    Article  ADS  Google Scholar 

  34. Muñoz, A., Alonso, J.A., Martínez-Lope, M.J., García-Muñoz, J.L., Fernández-Díaz, M.T.: J. Phys. Condens. Matter 12, 1361 (2000)

    Article  ADS  Google Scholar 

  35. Kumar, S., Kampf, A.P.: Phys. Rev. B 77, 134442 (2008)

    Article  ADS  Google Scholar 

  36. Luborsky, F.E.: Ferromagnetic Materials. Elsevier, Amsterdam (1979)

    Google Scholar 

  37. Kittel, C.: Quantum Theory of Solids. Wiley, New York (1993)

    Google Scholar 

  38. Smolyaninova, V.N., Hamilton, J.J., Greene, R.L., Mukovskii, Y.M., Karabashev, S.G., Balbashov, A.M.: Phys. Rev. B 55, 5640 (1997)

    Article  ADS  Google Scholar 

  39. Jiang, W., et al.: Phys. Rev. B 78, 144409 (2008)

    Article  ADS  Google Scholar 

  40. Bouzerar, G., Cépas, O.: Phys. Rev. B 76, 020401 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is within the frame work of collaboration is supported by the Tunisian Ministry of Higher Education and Scientific Research and Technology and the Higher Education, Scientific of French.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Khelifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khelifi, J., Tozri, A., Dhahri, E. et al. Influence of Quenched Disorder on the Structural Properties and Spin-Wave Excitations in Ferromagnetic Metallic Manganites (La1−x Nd x )2/3(Ca1−y Sr y )1/3MnO3 . J Supercond Nov Magn 26, 3133–3141 (2013). https://doi.org/10.1007/s10948-013-2131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2131-6

Keywords

Navigation