Skip to main content
Log in

Enhancement of Magnetic and Dielectric Properties in Chemically Modified Multiferroic (0.90)BiFe1−x Cr x O3–(0.10)BaTiO3 Nanocomposite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Multiferroic BiFeO3 and Cr-doped (0.90)BiFe1−x Cr x O3–(0.10)BaTiO3 (x=0.00, 0.03, and 0.05) nanocomposites were prepared by sol–gel method. Optimum calcination and sintering strategies for obtaining pure perovskite phase have been determined. X-ray diffraction and transmission electron microscope (TEM) were used for the structural and particle size analysis, whereas LCR and SQUID magnetometer was used for dielectric and magnetic measurements. TEM measurements show that the average particle sizes of all the samples were ∼19 nm. The dielectric constant was found to be increased twofold in low frequency region with the Cr-doping for x=0.05 in (0.90)BiFe1−x Cr x O3–(0.10)BaTiO3. The hysteresis curve (MH) exhibits ferromagnetic nature for all the samples (x=0.0, 0.03, and 0.05) and the spontaneous magnetization at room temperature was found to be 0.63 emu/gm in pure BiFeO3, which increased to 0.99 emu/gm for x=0.05. Zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves show large discrepancy suggesting spin glass behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tokura, Y.: J. Magn. Magn. Mater. 310, 1145 (2007)

    Article  ADS  Google Scholar 

  2. Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature 442, 05023 (2006)

    Article  Google Scholar 

  3. Chu, Y.H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S., He, Q., Balke, N., Yang, C.H., Lee, D., Hu, W., Zhan, Q., Yang, P., Rodriguez, A.F., Scholl, A., Wang, S.X., Ramesh, R.: Nat. Mater. 7, 478 (2008)

    Article  ADS  Google Scholar 

  4. Martin, L.W., Chu, Y., Holcomb, M.B., Huijben, M., Yu, P., Han, S., Lee, D., Wang, S.X., Ramesh, R.: Nano Lett. 8, 2050 (2008)

    Article  ADS  Google Scholar 

  5. Catalan, G., Scott, J.F.: Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  6. Ederer, C., Spaldin, N.A.: Phys. Rev. B 71, 060401 (2005)

    Article  ADS  Google Scholar 

  7. Zhang, S.T., Zhang, Y., Lu, M.H., Du, C.L., Chen, Y.F., Liu, Z.G., Zhu, Y.Y., Ming, N.B., Pan, X.Q.: Appl. Phys. Lett. 88, 162901 (2006)

    Article  ADS  Google Scholar 

  8. Yuan, G.L., Or, S.W., Liu, J.M., Liu, Z.G.: Appl. Phys. Lett. 89, 052905 (2006)

    Article  ADS  Google Scholar 

  9. Xu, Q., Zai, H., Wu, D., Qiu, T., Xu, M.X.: Appl. Phys. Lett. 95, 112510 (2009)

    Article  ADS  Google Scholar 

  10. Kim, J.S., Cheon, C.I., Lee, C.H., Jang, P.W.: J. Appl. Phys. 96, 468 (2004)

    Article  ADS  Google Scholar 

  11. Zhu, W.M., Ye, Z.G.: Appl. Phys. Lett. 89, 232904 (2006)

    Article  ADS  Google Scholar 

  12. Zhang, S.T., Pang, L.H., Zhang, Y., Lu, M.H., Chen, Y.F.: J. Appl. Phys. 100, 114108 (2006)

    Article  ADS  Google Scholar 

  13. Rai, R., Bdikin, I., Valente, M.A., Kholkin, A.L.: Mater. Chem. Phys. 119, 539 (2010)

    Article  Google Scholar 

  14. Simoesa, A.Z., Garciaa, F.G., Riccardib, C.D.S.: Mater. Chem. Phys. 116, 305 (2009)

    Article  Google Scholar 

  15. Hu, G.D., Fan, S.H., Yang, C.H., Wu, W.B.: Appl. Phys. Lett. 92, 192905 (2008)

    Article  ADS  Google Scholar 

  16. Qi, X., Dho, J., Tomov, R., Blamire, M.G., Mac Amnus-Driscoll, J.L.: Appl. Phys. Lett. 86, 062903 (2005)

    Article  ADS  Google Scholar 

  17. Ueda, K., et al.: Science 280, 1064 (1998)

    Article  ADS  Google Scholar 

  18. Uniyal, P., Yadav, K.L.: J. Phys. Condens. Matter 21, 012205 (2009)

    Article  ADS  Google Scholar 

  19. Li, J.B., Rao, G.H., Liang, J.K., Liu, Y.H., Liu, J., Chen, J.R.: Appl. Phys. Lett. 90, 162513 (2007)

    Article  ADS  Google Scholar 

  20. Jonscher, A.K.: Universal Relaxation Law. Chelsea Dielectric Press, London (1996)

    Google Scholar 

  21. Park, T.J., Papaefthymiou, G., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Nano Lett. 7, 766 (2007)

    Article  ADS  Google Scholar 

  22. Mazumder, R., Devi, P.S., Bhattacharya, D., Choudhary, P., Sen, A., Raja, M.: Appl. Phys. Lett. 91, 062510 (2007)

    Article  ADS  Google Scholar 

  23. Kumar, M.M., Srinivas, A., Suryanarayana, S.V., Bhimasankaram, T.: Phys. Status Solidi A 165, 317 (1998)

    Article  ADS  Google Scholar 

  24. Ederer, C., Spaldin, N.A.: Phys. Rev. B 71, 060401 (2005)

    Article  ADS  Google Scholar 

  25. Randell, C.A., Bhalla, A.S., Shrout, T.R., Cross, LE: J. Mater. Res. 5, 829 (1990)

    Article  ADS  Google Scholar 

  26. Koops, C.G.: Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  27. Raghavender, A.T., Hong, H.N., Chulkwon, P., Hwa, J.M., Lee, K.J., Lee, D.: Mater. Lett. 65, 2786–2788 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

MS is grateful to the Sharda University of India for providing financial support and leave for carrying out this work at Motilal Nehru National Institute of Technology in Allahabad. NK is thankful to Department of Science and Technology, Government of India, for the funding (SR/FTP/PS-04/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Sahni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahni, M., Singh, S., Bhargava, R. et al. Enhancement of Magnetic and Dielectric Properties in Chemically Modified Multiferroic (0.90)BiFe1−x Cr x O3–(0.10)BaTiO3 Nanocomposite. J Supercond Nov Magn 26, 397–402 (2013). https://doi.org/10.1007/s10948-012-1736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1736-5

Keywords

Navigation