Skip to main content
Log in

Scintillation Index of a Plane Wave Propagating Through Kolmogorov and Non-Kolmogorov Turbulence along Laser-Satellite Communication Downlink at Large Zenith Angles

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Now it is indisputable fact that the Earth’s aerosphere contains Kolmogorov and non-Kolmogorov turbulence, which has been confirmed by increasing experimental evidences and theoretical investigations. Based on this, the scientific community conducts investigations on the combined influence of Kolmogorov turbulence and non-Kolmogorov one on optical wave propagating in the aerosphere. In this paper, based on the further additional measurements, a three-layer altitude-dependent turbulent spectrum model of refractive-index fluctuations for vertical/slant path is proposed to describe the variations of turbulent statistical characteristics with altitude in the aerosphere. This model that is more accurate than the two-layer model is used to estimate the performance of laser-satellite communication system for satellite-to-ground link. Using the extended Rytov theory, the scintillation index of a plant wave propagating through Kolmogorov and non-Kolmogorov turbulence along laser-satellite communication downlink at large zenith angles is presented. It is noteworthy that this expression is also valid in all regimes of turbulent fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Constantine, L. E. Elgin, M. L. Stevens, et al., Proc. SPIE, 7932, 792308-1 (2011).

    Google Scholar 

  2. X. Sun, D. R. Skillman, E. D. Hoffman, et al., Opt. Express, 21, 1865 (2013).

    Article  ADS  Google Scholar 

  3. K. Bohmer, M. Gregory, F. Heine, et al., Proc. SPIE, 8246, 82460D (2012).

    Article  Google Scholar 

  4. T. Tolker-Nielsen and G. Oppenhaeuser, Proc. SPIE, 4635, 1 (2002).

    Article  ADS  Google Scholar 

  5. T. Jono, Y. Takayama, N. Kura, et al., Proc. SPIE, 6105, 13 (2006).

    Google Scholar 

  6. B. Smutny, H. Kaempfner, G. Muehlnikel, et al., Proc. SPIE, 7199, 719906 (2009).

    Article  Google Scholar 

  7. V. Sharma and N. Kumarb, Opt. Commun., 286, 99 (2013).

    Article  ADS  Google Scholar 

  8. M. Toyoshima, Y. Takayama, H. Kunimori, et al., Proc. SPIE, 6709, 67091C (2007).

    Article  ADS  Google Scholar 

  9. W. Wright, M. Srinivasan, and K. Wilson, “Improved optical communications performance using adaptive optics with an avalanche photodiode detector,” in: The Interplanetary Network Progress Report, Vol. 42-161, p. 1 (2005) [https://ipnpr.jpl.nasa.gov/progress_report/42-161/161D.pdf].

  10. S. Arnon, J. R. Barry, G. K. Karagiannidis, et al., Advanced Optical Wireless Communication Systems, Cambridge University Press (2012).

  11. L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media, Bellingham, WA (2005).

    Book  Google Scholar 

  12. S. S. Chesnokov and S. E. Skipetrov, Opt. Commun., 141, 113 (1997).

    Article  ADS  Google Scholar 

  13. X. Chen and X. Ji, Opt. Commun., 281, 4765 (2008).

    Article  ADS  Google Scholar 

  14. A. Consortini, C. Innocenti, and G. Paoli, Opt. Commun., 214, 9 (2002).

    Article  ADS  Google Scholar 

  15. G. M. Dalaudier, A. S. Gurvich, V. Kan, and C. Sidi, Adv. Space Res., 14, 61 (1994).

    Article  ADS  Google Scholar 

  16. A. Zilberman, E. Golbraikh, N. S. Kopeika, et al., Atmos. Res., 88, 66 (2008).

    Article  Google Scholar 

  17. D. T. Kyrazis, J. B. Wissler, D. D. B. Keating, et al., Proc. SPIE, 2120, 43 (1994).

    Article  ADS  Google Scholar 

  18. W. Du, Z. Yao, D. Liu, et al., J. Russ. Laser Res., 33, 90 (2012).

    Article  Google Scholar 

  19. A. Zilberman, E. Golbraikh, S. Arnon, and N. S. Kopeika, Proc. SPIE, 6709, 67090K-1 (2007).

    Article  ADS  Google Scholar 

  20. X. Chu, C. Qiao, X. Feng, and R. Chen, Appl. Opt., 50, 3871 (2011).

    Article  ADS  Google Scholar 

  21. A. S. Gurvich and M. S. Belen’kii, J. Opt. Soc. Am. A., 12, 2517 (1995).

    Article  ADS  Google Scholar 

  22. M. S. Belen’kii, Opt. Lett., 20, 1359 (1995).

    Article  ADS  Google Scholar 

  23. S. Fu, L. Tan, J. Ma, and Y. Zhou, J. Russ. Laser Res., 31, 332 (2010).

    Article  Google Scholar 

  24. A. Zilberman, E. Golbraikh, and N. S. Kopeika, Appl. Opt., 47, 6385 (2008).

    Article  ADS  Google Scholar 

  25. X. Yi, Z. Liu, and P. Yue, Optik, 124, 2916 (2013).

    Article  ADS  Google Scholar 

  26. R. R. Beland, Proc. SPIE, 2375, 6 (1995).

    Article  ADS  Google Scholar 

  27. A. Zilberman, E. Golbraikh, and N. S. Kopeika, Opt. Commun., 283, 1229 (2010).

    Article  ADS  Google Scholar 

  28. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE, 6747, 67470B-1 (2007).

    Article  ADS  Google Scholar 

  29. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Opt. Eng., 39, 3272 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhe Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Cheng, X., Wang, Y. et al. Scintillation Index of a Plane Wave Propagating Through Kolmogorov and Non-Kolmogorov Turbulence along Laser-Satellite Communication Downlink at Large Zenith Angles. J Russ Laser Res 41, 616–627 (2020). https://doi.org/10.1007/s10946-020-09916-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09916-3

Keywords

Navigation