Skip to main content
Log in

Influence of non-kolmogorov turbulence on intensity fluctuations in laser satellite communication

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Satellite laser communication holds the potential for high-bandwidth communication, but the atmosphere can significantly affect the capability of this type of communication systems for satellite-toground and ground-to-satellite data links to transfer information consistently and operate effectively. Usually the influence of atmosphere on satellite laser communication is investigated based on the Kolmogorov turbulence model. However, both increasing experimental evidence and theoretical investigations have shown that the Kolmogorov theory is sometimes incomplete to describe the atmospheric statistics properly, in particular, in some portions of the atmosphere. Considering a non-Kolmogorov turbulent power spectrum with power law 5 that describes the refractive-index fluctuations in the atmosphere above 6 km, we calculate the scintillation index of a lowest-order Gaussian-beam wave under the weak-fluctuation condition. Then, considering a combined power spectrum of refractiveindex fluctuations and using the expression obtained, we analyze the joint influence of the Kolmogorov turbulence from the ground to 6 km and non-Kolmogorov turbulence above 6 km on the scintillation indices of laser beams used in ground-to-satellite and satellite-to-ground laser communication links. We show that the scintillation index in satellite laser communication is equal to the sum of the scintillation indices induced by the Kolmogorov turbulence from ground to 6 km and that caused by the non-Kolmogorov turbulence above 6 km. Also we investigate variations of the scintillation index with the beam radius on the transmitter, wavelength, the radial distance, and zenith angle. Finally, comparing the scintillation index induced by these two turbulences with the conventional results, we show that the scintillation index induced by these two turbulences is a bit smaller than the conventional results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Marshalek, G. S. Mecherle, and P. R. Jordan, Proc. SPIE, 2699, 134 (1996).

    Article  ADS  Google Scholar 

  2. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Optical Engineering Press, Bellingham (2005).

    Book  Google Scholar 

  3. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill Book Company, New York (1961).

    Google Scholar 

  4. T. Chiba, Appl. Opt., 10, 2456 (1971).

    Article  ADS  Google Scholar 

  5. L. C. Andrews, W. B. Miller, and J. C. Ricklin, J. Opt. Soc. Am. A, 11, 2719 (1994).

    Article  ADS  Google Scholar 

  6. W. B. Miller, J. C. Ricklin, and L. C. Andrews, J. Opt. Soc. Am. A, 10, 661 (1993).

    Article  ADS  Google Scholar 

  7. A. K. Majumdar and J. C.Ricklin, Proc. SPIE, 5892, 58920K-1 (2004).

    Article  Google Scholar 

  8. K. Kazaura, K. Omae, T. Suzuki, and M. Matsumoto, Opt. Exp., 14, 4958 (2006).

    Article  ADS  Google Scholar 

  9. L. C. Andrews, R. L. Phillips, and P. T. Yu, Appl. Opt., 34, 7742 (1995).

    Article  ADS  Google Scholar 

  10. S. S. Chesnokov and S. E. Skipetrov, Opt. Commun., 141, 113 (1997).

    Article  ADS  Google Scholar 

  11. X. Chen and X. Ji, Opt. Commun, 281, 4765 (2008).

    Article  ADS  Google Scholar 

  12. A. Consortini, C. Innocenti, and G. Paoli, Opt. Commun., 214, 9 (2002).

    Article  ADS  Google Scholar 

  13. J. L. Bufton, R. S. Iyer, and L. S. Taylor, Appl. Opt., 16, 2408 (1977).

    Article  ADS  Google Scholar 

  14. N. D. Chatzidiamantis, H. G. Sandalidis, G. K. Karagiannidis, and M. Matthaiou, J. Lightwave Technol., 29, 1590 (2011).

    Article  ADS  Google Scholar 

  15. E. Golbraikh and N. S. Kopeika, Appl. Opt., 43, 6151 (2004).

    Article  ADS  Google Scholar 

  16. G. M. Dalaudier, A. S. Gurvich, V. Kan, and C. Sili, Adv. Space Res., 14, 61 (1994).

    Article  ADS  Google Scholar 

  17. A. Zilberman, E. Golbraikh, S. Kopeika, et al., Atmos. Res., 88, 66 (2008).

    Article  Google Scholar 

  18. D. T. Kyrazis, J. B. Wissler, D. D. B. Keating, et al., Proc. SPIE, 2120, 43 (1994).

    Article  ADS  Google Scholar 

  19. G. D. Boreman and C. Dainty, J. Opt. Soc. Am. A, 13, 517 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Tan, W. Du, J. Ma, et al., Opt. Exp., 18, 451 (2010).

    Article  ADS  Google Scholar 

  21. Y. Zhang, C. Si, Y. Wang, et al., Opt. Laser Technol., 43, 1338 (2011).

    Article  ADS  Google Scholar 

  22. R. R. Beland, Proc. SPIE, 2375, 6 (1995).

    Article  ADS  Google Scholar 

  23. A. S. Gurvich and M. S. Belen’kii, J. Opt. Soc. Am. A, 12, 2517 (1995).

    Article  ADS  Google Scholar 

  24. M. S. Belen’kii, Opt. Lett., 20, 1359 (1995).

    Article  ADS  Google Scholar 

  25. S. Fu, L. Tan, J. Ma, and Y. Zhou, J. Russ. Laser Res., 31, 332 (2010).

    Article  Google Scholar 

  26. L. C. Andrews, W. B. Miller, and J. C. Ricklin, Appl. Opt., 32, 5918 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhe Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, W., Yao, Z., Liu, D. et al. Influence of non-kolmogorov turbulence on intensity fluctuations in laser satellite communication. J Russ Laser Res 33, 90–97 (2012). https://doi.org/10.1007/s10946-012-9263-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-012-9263-1

Keywords

Navigation