Skip to main content
Log in

Theoretical study of the 1,3Σ+ states of the NaH molecule in the adiabatic and diabatic representations

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Adiabatic and diabatic study for all the states dissociating below the ionic limit [i.e., Na (3s, 3p, 4s, 3d, 4p, 5s, 4d, and 4f) + H (1s)] in 1Σ+ and 3Σ+ symmetries are presented. Adiabatic results are also reported for 1,3Π and 1,3Δ symmetries. Pseudo-potential, operatorial core-valence correlation, and full valence CI approaches combined with an efficient diabatization procedure are used in these ab initio calculations. Our vibrational-level spacings and spectroscopic constants are in good agreement with the available experimental data for the low-lying states. Diabatic potentials and dipole moments are analyzed, revealing the strong imprint of the ionic state in the 1Σ+ adiabatic states. The hydrogen electron affinity correction was taken into account by the use of the efficient diabatization method. This leads to a better agreement with the available experimental data. Experimental suggestions are also given for the higher excited states based on their unusual behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Boutalib and F. X. Gadea, J. Chem. Phys., 97, 1144 (1992).

    Article  ADS  Google Scholar 

  2. B. Lepetit, M. LeDourneuf, J. M. Launay, and F. X. Gadea, Chem. Phys. Lett., 135, 377 (1987).

    Article  ADS  Google Scholar 

  3. G. Chanband and B. Lévy, J. Phys. B: At. Mol. Opt. Phys., 22, 3155 (1989).

    Article  ADS  Google Scholar 

  4. M. Pelissier, N. Komiha, and J. P. Daudey, J. Comput. Chem., 9, 298 (1988).

    Article  Google Scholar 

  5. C. L. Peckeris, Phys. Rev., 126, 1470 (1962).

    Article  ADS  Google Scholar 

  6. J. P. Malrieu, D. Maynau, and J. P. Daudey, Phys. Rev. B, 30, 1817 (1984)

    Article  ADS  Google Scholar 

  7. V.M. Garcia, R. Caballol, and J. P. Malrieu, J. Chem. Phys., 109, 504 (1998)

    Article  ADS  Google Scholar 

  8. G.H. Jeung, J. P. Daudey, and J. P. Malrieu, J. Phys. B: At. Mol. Phys., 16, 699 (1983).

    Article  ADS  Google Scholar 

  9. W. C. Stwalley and W. T. Zemke, J. Chem. Ref. Data, 22, 87 (1993).

    Article  ADS  Google Scholar 

  10. W. C. Stwalley, W. T. Zemke, and S. C. Yang, J. Chem. Ref. Data, 20, 153 (1991).

    ADS  Google Scholar 

  11. F. Gemperle and F. X. Gadea, J. Chem. Phys., 110, 111 (1999).

    Article  Google Scholar 

  12. F. X. Gadea and A. Boutalib, J. Phys. B: At. Mol. Opt. Phys., 26, 61 (1993).

    Article  ADS  Google Scholar 

  13. H. Berriche and F. X. Gadea, Chem. Phys. Lett., 247, 85 (1995).

    Article  ADS  Google Scholar 

  14. H. Croft, A. S. Dickinson, and F. X. Gadea, J. Phys. B: At. Mol. Opt. Phys., 32, 81 (1999).

    Article  ADS  Google Scholar 

  15. N. Khelifi, B. Oujia, and F. X. Gadea, J. Chem. Phys, 116, 2879 (2002).

    Article  ADS  Google Scholar 

  16. N. Khelifi, W. ZRafi, B. Oujia, and F. X. Gadea, Phys. Rev. A, 65, 042513 (2002).

    Google Scholar 

  17. W. ZRafi, N. Khelifi, B. Oujia, and F. X. Gadea, J. Phys. B: At. Mol. Opt. Phys., 39, 3815 (2006).

    Article  ADS  Google Scholar 

  18. H. Croft, A. S. Dickinson, and F. X. Gadea, Mon. Not. R. Astron. Soc., 304, 327 (1999).

    Article  ADS  Google Scholar 

  19. A. S. Dickinson, and F. X. Gadea, Mon. Not. R. Astron. Soc., 318, 1227 (2000).

    Article  ADS  Google Scholar 

  20. F. X. Gadea, F. Gemperle, H. Berriche, et al., J. Phys. B: At. Mol. Opt.Phys., 30, L427 (1997).

    Article  ADS  Google Scholar 

  21. G. Delgado-Barrio, J. Chem. Phys., 107, 10515 (1997).

    Article  Google Scholar 

  22. F. Gemperle and F. X. Gadea, Europhys. Lett., 48, 513 (1999).

    Article  ADS  Google Scholar 

  23. A. Yiannopouplou, G. H. Jeung, H. S. Lee, and Y. S. Lee, Phys. Rev. A, 59, 1178 (1999).

    Article  ADS  Google Scholar 

  24. A. S. Dickinson, R. Poteau, and F. X. Gadea, J. Phys. B: At. Mol. Opt. Phys., 32, 5451 (1999).

    Article  ADS  Google Scholar 

  25. T. Leininger, F. X. Gadea, and A. S. Dickinson, J. Phys. B: At. Mol. Opt. Phys., 33, 1805 (2000).

    Article  ADS  Google Scholar 

  26. R. Cote, M. J. Jamieson, Z. C. Yan, et al., Phys. Rev. Lett., 84, 2806 (2000).

    Article  ADS  Google Scholar 

  27. W. Muller, J. Flesh, and W. Meyer, J. Chem. Phys., 80, 3297 (1984).

    Article  ADS  Google Scholar 

  28. Ph. Durand and J. C. Barthelat, Theor. Chim. Acta, 38, 283 (1975).

    Article  Google Scholar 

  29. J. C. Barthelat and Ph. Durand, Gazz. Chim. Ital., 108, 225 (1978).

    Google Scholar 

  30. M. Foucrault, Ph. Millie, and J. P. Daudey, J. Chem. Phys., 96, 1257 (1988).

    Article  ADS  Google Scholar 

  31. C. E. Moore, Atomic Energy Levels, NBS, USGPO, Washington (1971).

    Google Scholar 

  32. Hyo Sug Lee, Yoon Sup Lee, and Gwang-Hi Jeung, Chem. Phys. Lett., 325, 46 (2000).

    Article  ADS  Google Scholar 

  33. F. X. Gadea, Thèse dÉtat, Université Paul Sabatier, Toulouse (1987).

  34. F. X. Gadea and M. Pelissier J. Chem. Phys., 93, 545 (1990).

    Article  ADS  Google Scholar 

  35. T. Romero, A. Aguilar, and F. X. Gadea, J. Chem. Phys., 110, 16219 (1999).

    Article  ADS  Google Scholar 

  36. F. X. Gadea, Phys. Rev. A, 43, 1160 (1991).

    Article  ADS  Google Scholar 

  37. R. Hoffmann, J. Chem. Phys., 39, 1397 (1963).

    Article  ADS  Google Scholar 

  38. E. Fermi, Nuovo Cimento, 11, 157 (1934).

    Article  MATH  Google Scholar 

  39. A. Omont, J. Phys., 38, 1343 (1977).

    Google Scholar 

  40. A. S. Dickinson and F. X. Gadea, Phys. Rev. A, 65, 052506 (2002).

    Google Scholar 

  41. A. S. Dickinson and F. X. Gadea, J. Mol. Struct. (Theochem)., 621, 87 (2003).

    Article  Google Scholar 

  42. H. Huang, W. T. Luh, G. H. Jeung, and F. X. Gadea, J. Chem. Phys., 113, 683 (2000).

    Article  ADS  Google Scholar 

  43. R. E. Olsen and B. Liu, J. Chem. Phys., 73, 2817 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neji Khelifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khelifi, N. Theoretical study of the 1,3Σ+ states of the NaH molecule in the adiabatic and diabatic representations. J Russ Laser Res 29, 274–287 (2008). https://doi.org/10.1007/s10946-008-9017-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-008-9017-2

Keywords

Navigation