Skip to main content
Log in

Multiline laser probing of CO:He, CO:N2, and CO:O2 active media in a wide-aperture pulsed amplifier

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Multiline laser probing was applied for the diagnostics of the active medium of a wide-aperture carbon monoxide laser amplifier. The temporal behavior of the small-signal gain in the active medium of a pulsed electron-beam sustained discharge CO laser amplifier was studied with a specially designed probe CO laser in a wide range of ro-vibrational spectral lines (from V = 5 up to V = 31). The results were analyzed in order to reconstruct the temporal behavior of gas temperature and vibrational populations in CO-containing gas mixtures, CO:He and CO:N2, and oxygen-rich CO: O2 mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. N. Patel and R. J. Kerl, Appl. Phys. Lett., 5, 81 (1964).

    Article  ADS  Google Scholar 

  2. A. A. Ionin, I. B. Kovsh, V. A. Sobolev, and B. M. Urin, Electric-discharge IR High Pressure Lasers and Applications [in Russian], Radiotekhnika (Itogi Nauki i Tekhniki), VINITI, Moscow 32 (1984).

    Google Scholar 

  3. A. Ionin and I. Spalding, “CO lasers — state of the art and potential of application,” in: W. J. Witteman and V. N. Ochkin (Eds.), Gas Lasers — Recent Developments and Future Prospects, NATO ASI Series, 3._High Technology, 1.10, 279 (1995).

  4. V. Yu. Anan’ev, N. G. Basov, A. A. Ionin, et al., Kvantovaya Élektron., 12, 1666 (1985).

    Google Scholar 

  5. V. Yu. Anan’ev, V. A. Danilychev, A. A. Ionin, et al., Kvantovaya Élektron., 16, 9 (1989).

    Google Scholar 

  6. C. E. Treanor, J. W. Rich, and R. G. Rehm, J. Chem. Phys., 48, 1798 (1968).

    Article  ADS  Google Scholar 

  7. N. N. Sobolev and V. V. Sokovikov, Kvantovaya Élektron., 10, 3, (1972); Usp. Fiz. Nauk, 110, 191 (1973).

    Google Scholar 

  8. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers, Nauka, Moscow (1980); [English translation: Gordon and Breach Science Publ., New York 1988)].

    Google Scholar 

  9. J. W. Rich, “Relaxation of Molecules during the Exchange of Vibrational Energy,” in: I. MacDaniel and W. Nihen (Eds.), Gas Lasers [Russian translation: Mir, Moscow (1986), p. 125].

    Google Scholar 

  10. A. P. Napartovich, “Physics of high power CO lasers,” n: W. J. Witteman and V. N. Ochkin (Eds.), Gas Lasers — Recent Developments and Future Prospects, NATO ASI Series, 3. High Technology, 1.10, 11 (1995).

  11. M. J. W. Boness and R. E. Center, Appl. Phys. Lett., 26, 511 (1975).

    Article  ADS  Google Scholar 

  12. N. G. Basov, V. S. Kazakevich, I. B. Kovsh, and A. N. Mikryukov, Kvantovaya Élektron., 10, 1049 (1983).

    Google Scholar 

  13. N. G. Basov, A. A. Ionin, Yu. M. Klimachev, et al., Kvantovaya Élektron., 32, 404 (2002).

    Article  Google Scholar 

  14. A. A. Ionin, Yu. M. Klimachev, Yu. B. Konev, et al., Kvantovaya Élektron., 30, 573 (2000).

    Article  Google Scholar 

  15. A. A. Ionin, Yu. M. Klimachev, Yu. B. Konev, et al., J. Phys. D: Appl. Phys., 34, 2230 (2001).

    Article  ADS  Google Scholar 

  16. S. V. Vetoshkin, A. A. Ionin, Yu. M. Klimachev, et al., “Small signal gain time behavior in active medium of pulsed electron beam sustained discharge CO laser: theory and experiment” [in Russian], Preprint No. 27, P. N. Lebedev Physical Institute, Moscow (2004).

    Google Scholar 

  17. R. C. Bergman and J. W. Rich, Appl. Phys. Lett., 31, 597 (1977).

    Article  ADS  Google Scholar 

  18. N. G. Basov, V. A. Danilychev, A. A. Ionin, et al., Kvantovaya Élektron., 5, 1855 (1978).

    Google Scholar 

  19. M. Gromoll-Bohle, W. Bohle, and W. Urban, Opt. Commun., 69, 409 (1989).

    Article  ADS  Google Scholar 

  20. N. G. Basov, A. A. Ionin, A. A. Kotkov, et al., Kvantovaya Élektron., 30, 771 (2000); 30, 859 (2000).

    Article  Google Scholar 

  21. O. G. Buzykin, S. V. Ivanov, A. A. Ionin, et al., Opt. Atmosf. Okeana, 14, 400 (2001).

    Google Scholar 

  22. E. T. Aliev, N. G. Basov, I. B. Kovsh, et al., Kvantovaya Élektron., 11, 874 (1984).

    Google Scholar 

  23. J. W. Rich, R. C. Bergman, and J. A. Lordi, AIAA J., 13, 95 (1975).

    Article  Google Scholar 

  24. E. L. Klosterman and S. R. Byron, J. Appl. Phys., 50, 5168 (1979).

    Article  ADS  Google Scholar 

  25. I. I. Gorshkov, A. A. Ionin, A. A. Kotkov, et al., Kratkie Soobshch. Fiz., 5, 31 (1989).

    Google Scholar 

  26. A. A. Ionin, A. A. Kotkov, M. G. Minkovsky, and D. V. Sinitzyn, Proc. SPIE, 1397, 453 (1990).

    Article  Google Scholar 

  27. A. M. Borodin, V. A. Gurashvili, V. N. Kuz’min, et al., Kvantovaya Élektron., 23, 315 (1996).

    Google Scholar 

  28. B. S. Aleksandrov, V. A. Belavin, B. M. Dymshits, and Ya. P. Koretsky, Kvantovaya Élektron., 24, 601 (1997).

    Google Scholar 

  29. J. E. McCord, R. F. Tate, S. Dass, et al. Proc. SPIE, 5448, 379 (2004).

    Article  ADS  Google Scholar 

  30. N. M. Vyazovetsky, A. I. Didyukov, V. Yu. Kirko, et al., “Gas media parameter determination after gain spectral distribution measurements” [in Russian], Preprint No. 221, P. N. Lebedev Physical Institute, Moscow (1988).

    Google Scholar 

  31. A. I. Didyukov, V. Yu. Kirko, Yu. A. Kulagin, and L. A. Shelepin, “Multifrequency laser probing” [in Russian], Preprint No. 109, P. N. Lebedev Physical Institute, Moscow (1989).

    Google Scholar 

  32. N. M. Vyazovetsky, A. I. Didyukov, V. Yu. Kirko, et al., Zh. Prikl. Spektrosk., 52, 659 (1990).

    Google Scholar 

  33. A. A. Ionin, Yu. M. Klimachev, A. A. Kotkov, et al., “Non-selfsustained electric discharge in oxygen gas mixtures: singlet delta oxygen production” [in Russian], Preprint No. 27, P. N. Lebedev Physical Institute, Moscow (2002).

    Google Scholar 

  34. A. A. Ionin, Yu. M. Klimachev, A. A. Kotkov, et al., J. Phys. D: Appl. Phys., 36, 982 (2003).

    Article  ADS  Google Scholar 

  35. N. P. Vagin, A. A. Ionin, Yu. M. Klimachev, et al., Kvantovaya Élektron., 34, 865 (2004).

    Article  Google Scholar 

  36. N. G. Basov, E. M. Belenov, V. A. Danilychev, and A. F. Suchkov, Kvantovaya Élektron., 3, 121 (1971).

    Google Scholar 

  37. E. N. Lotkova, V. V. Pisarenko, and N. N. Sobolev, Zh. Prikl. Spektrosk., 23, 988 (1975).

    ADS  Google Scholar 

  38. V. S. Aleinikov and V. I. Masychev, CO Lasers [in Russian], Radio i Svyaz’, Moscow (1990).

    Google Scholar 

  39. E. Bachem, A. Dax, T. Fink, et al., Appl. Phys., B57, 185 (1993).

    ADS  Google Scholar 

  40. C. K. N Patel, Phys. Rev., 141, 71 (1966).

    Article  ADS  Google Scholar 

  41. Yu. B. Konev, I. V. Kochetov, V. G. Pevgov, and V. F. Sharkov, “Analysis of kinetic processes determining parameters of CO-laser” [in Russian], Preprint No. 2821, I. V. Kurchatov Institute of Atomic Energy, Moscow (1977).

    Google Scholar 

  42. G. B. Bubyakin, A. V. Eletsky, and V. F. Papulovsky, Usp. Fiz. Nauk, 106, 723 (1972).

    Google Scholar 

  43. V. S. Kazakevich, PhD Thesis (Physics and Mathematics), P. N. Lebedev Physical Institute, Moscow (1984).

  44. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solution of Ill-posed Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  45. N. N. Elkin, I. V. Kochetov, A. K. Kurnosov, and A. P. Napartovich, Kvantovaya Élektron., 17, 313 (1990).

    Google Scholar 

  46. G. Guelachvili, D. de Villienuve, R. Farrenq, et al., J. Mol. Spectrosc., 98, 64 (1983).

    Article  ADS  Google Scholar 

  47. P. R. Gill, M. Murray, and M. H. Wright, The Levenberg-Marquardt Method, in: Practical Optimization, Academic Press, London (1981), p. 136.

    Google Scholar 

  48. J. Forsyte, M. Malcolm, and C. Mowler, Machine Methods of Mathematical Calculations [Russian translation: Mir, Moscow (1980)].

    Google Scholar 

  49. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Englewood Cliffs, Prentice Hall, NJ (1974).

    MATH  Google Scholar 

  50. S. V. Vetoshkin, A. A. Ionin, Yu. M. Klimachev, et al., “Electron beam sustained discharge CO laser with high ( 95%) content of oxygen in gas mixture” [in Russian], Proc. Sci. Session “MEPhI-2005,” Moscow Institute of Physics and Engineering, Moscow (2005), Vol. 4, p. 26.

    Google Scholar 

  51. Ya. I. Londer, L. P. Menakhin, and K. N. Ul’yanov, Teplofiz. Vys. Temp., 19, 720 (1981).

    Google Scholar 

  52. E. Plönjes, P. Palm, W. Lee, et al., J. Chem. Phys., 260, 353 (2000).

    Article  Google Scholar 

  53. I. S. Grigoriev and E. Z. Melikhov (Eds.), Physical Quantities: A Reference Book [in Russian], Energoatomizdat, Moscow (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Preprint No. 13 of the P. N. Lebedev Physical Institute, Moscow (2005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetoshkin, S.V., Ionin, A.A., Klimachev, Y.M. et al. Multiline laser probing of CO:He, CO:N2, and CO:O2 active media in a wide-aperture pulsed amplifier. J Russ Laser Res 27, 33–69 (2006). https://doi.org/10.1007/s10946-006-0002-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0002-3

Keywords

Navigation