Skip to main content
Log in

A comprehensive study on the adsorption-photocatalytic processes using manganese oxide-based magnetic nanocomposite with different morphology as adsorbent-photocatalyst in degradation of azo dyes under UV irradiation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Magnetic MnO2 nanocomposites with flower-like and wire-like morphologies were synthesized, characterized and well applied for degradation of methyl orange, as model acidic azo dye, from aqueous media. The characterization studies showed the successful formation of the proposed nanocomposites with desirable properties. In addition, the surface properties of the nanocomposite were enhanced by MnO2 modification, creating more efficient reaction sites for dye degradation. The effects of different factors such as initial pH, dye concentration, contact time, nanocomposite dosage, stirring rate, type and amount of scavenger in degradation efficiency are investigated using experimental design. The degradation efficiencies of nanocomposites with flower-like were higher than its wire-like morphology, and under optimum conditions (i.e., pH 5, catalyst dose 1.5 g l–1, hole scavenger 0.15% (w/v), time 30 min, dye concentration 400 ppm, under stirring rate 300 rpm) degradation efficiencies above 99% were achieved. The kinetics, isotherm and thermodynamic studies for dye degradation process using the proposed nanocomposites were perused. Negative ∆Go confirms the spontaneous nature of the optical decolourization MO decomposition process. Finally, due to the sample fabrication method, environmental compatibility and good potential due to flower- and wire-like morphologies, the proposed nanocomposites were successfully used as adsorbent-photocatalyst for dye degradation from different real aqueous media.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Saemian T, Gharagozlou M, Hossaini Sadr M and Naghibi S 2020 J. Inorg. Organomet. Polym. Mater. 30 23472

    Article  CAS  Google Scholar 

  2. Xiao L, Sun W, Zhou X, Cai Z and Hu F 2018 Vacuum 156 2913

    Article  CAS  Google Scholar 

  3. Revathi J, Abel M J, Archana V, Sumithra T, Thiruneelakandan R and Joseph Prince J 2020 Phys. B Condens. Matter 587 412136

  4. Cai B, Feng J-F, Peng Q-Y, Zhao H-F, Miao Y-C and Pan H 2020 J. Hazard. Mater. 392 1222795

  5. Nguyen C H, Fu C C and Juang R S 2018 J. Clean. Prod. 202 413

    Article  CAS  Google Scholar 

  6. Dhir R 2020 Chem. Phys. Lett. 746 1373027

    Article  CAS  Google Scholar 

  7. Gomathi Devi L, Girish Kumar S, Mohan Reddy K and Munikrishnappa C 2009 J. Hazard. Mater. 164 459

    Article  CAS  Google Scholar 

  8. Bahrudin N N, Nawi M A and Zainal Z 2020 Int. J. Biol. Macromol. 165 24629

    Article  CAS  Google Scholar 

  9. Smith Y R, Kar A and Subramanian V 2009 Ind. Eng. Chem. Res. 48 10268

    Article  CAS  Google Scholar 

  10. Yuvaraja G, Chen D Y, Pathak J L, Long J, Subbaiah M V, Wen J C et al 2020 Int. J. Biol. Macromol. 146 1100

    Article  CAS  Google Scholar 

  11. Youssef N A, Shaban S A, Ibrahim F A and Mahmoud A S 2016 Egypt. J. Pet. 25 317

    Article  Google Scholar 

  12. Yu H, Li Y, Zhao M, Dong H, Yu H, Zhan S et al 2015 Catal. Today 258 156

    Article  CAS  Google Scholar 

  13. Semiz L 2020 J. Inst. Sci. Technol. 98 32814

    Google Scholar 

  14. Wang J C, Lou H H, Xu Z H, Cui C X, Li Z J, Jiang K et al 2018 J. Hazard. Mater. 360 356

    Article  CAS  Google Scholar 

  15. Tseng W J and De Lin R 2014 J. Colloid Interface Sci. 428 9516

    Article  CAS  Google Scholar 

  16. Hao W, Xi Y, Hu J, Wang T, Du Y and Wang X L 2012 J. Appl. Phys. 111 07B301

    Article  CAS  Google Scholar 

  17. Yang Q, Song H, Li Y, Pan Z, Dong M, Chen F et al 2017 J. Mol. Liq. 234 1818

    Article  CAS  Google Scholar 

  18. Wang N, Pang H, Peng H, Li G and Chen X 2009 Cryst. Res. Technol. 44 1230

    Article  CAS  Google Scholar 

  19. Hui J, Pestana C J, Caux M, Gunaratne H Q N, Edwards C, Robertson P K J et al 2021 J. Photochem. Photobiol. A Chem. 405 112935

  20. Ren C, Yang B, Wu M, Xu J, Fu Z, lv Y et al 2010 J. Hazard. Mater. 182 123

  21. Pargoletti E, Pifferi V, Falciola L, Facchinetti G, Re Depaolini A, Davoli E et al 2019 Appl. Surf. Sci. 472 118

    Article  CAS  Google Scholar 

  22. Osgouei M S, Khatamian M and Kakili H 2020 Mater. Chem. Phys. 239 122108

  23. Sun Y G, Truong T T, Liu Y Z and Hu Y X 2015 Chin. Chem. Lett. 26 233

    Article  CAS  Google Scholar 

  24. Xia H, Feng J, Wang H, Lai M O and Lu L 2010 J. Power Sources 195 441025

  25. Sun F, He J, Wu P, Zeng Q, Liu C and Jiang W 2020 Chem. Eng. J. 397 12539726

    Google Scholar 

  26. Wang F, Dai H, Deng J, Bai G, Ji K and Liu Y 2012 Environ. Sci. Technol. 46 403427

  27. Das S, Samanta A and Jana S 2017 ACS Sustain. Chem. Eng. 5 9086

    Article  CAS  Google Scholar 

  28. Yang Y, Wang G, Deng Q, Ng D H L and Zhao H 2014 ACS Appl. Mater. Interfaces 6 300829

  29. Anh Tran V, Khoa Phung T, Le Thuan V, Ky Vo T, Tai Nguyen T, Anh Nga Nguyen T et al 2021 Mater. Lett. 284 12890230

    Article  CAS  Google Scholar 

  30. Li L, Chu Y, Liu Y and Dong L 2007 Mater. Lett. 61 1609

    Article  CAS  Google Scholar 

  31. Zhang Y, Xu Q, Zhang S, Liu J, Zhou J, Xu H et al 2013 Sep. Purif. Technol. 116 391

    Article  CAS  Google Scholar 

  32. Wang Y, Fu Y, Wu X, Zhang W, Wang Q and Li J 2017 Ceram. Int. 43 1136733

    Google Scholar 

  33. Xiang B, Ling D, Lou H and Gu H 2017 J. Hazard. Mater. 325 178

    Article  CAS  Google Scholar 

  34. Lowell S, Shields J E, Thomas M A and Thommes M 2005 Characterization of porous solids and powders: surface area, pore size, and density (Netherlands: Springer)

    Google Scholar 

  35. Qi C, Zhu Y J, Wu C T, Sun T W, Jiang Y Y, Zhang Y G et al 2016 RSC Adv. 6 968636

  36. Maroudas A, Pandis P K, Chatzopoulou A, Davellas L R, Sourkouni G and Argirusis C 2021 Ultrason. Sonochem. 71 105367

  37. Tanhaei B, Ayati A, Iakovleva E and Sillanpää M 2020 Int. J. Biol. Macromol. 164 362138

  38. Du Y, Wang L, Wang J, Zheng G, Wu J and Dai H 2015 J. Environ. Sci. (China) 29 7139

    Article  CAS  Google Scholar 

  39. Montgomery D 2012 Design and analysis of experiments (United States: Wiley)

  40. Soltani R D C, Rezaee A, Khataee A R and Safari M 2014 J. Ind. Eng. Chem. 20 186141

  41. Abbas-Shiroodi Z, Sadeghi M T and Baradaran S 2021 Ultrason. Sonochem. 71 10538642

    Article  CAS  Google Scholar 

  42. Zeraatkar Moghaddam A, Esmaeilkhanian E and Shakourian-Fard M 2019 Int. J. Biol. Macromol. 128 6143

    Article  CAS  Google Scholar 

  43. Khataee A R, Zarei M and Asl S K 2010 J. Electroanal. Chem. 648 14344

    Article  CAS  Google Scholar 

  44. Antonopoulou M, Giannakas A and Konstantinou I 2012 Int. J. Photoenergy 2012 145

    Article  CAS  Google Scholar 

  45. Murray L, Mason R L, Gunst R F and Hess J L 1990 Statistical design and analysis of experiments: with applications to engineering and science (United States: Wiley) p 46

  46. Zuorro A and Lavecchia R 2014 Desalin. Water Treat. 52 1571

    Article  CAS  Google Scholar 

  47. Chatterjee D and Dasgupta S 2005 J. Photochem. Photobiol. C Photochem. Rev. 6 186

    Article  CAS  Google Scholar 

  48. Doudrick K, Yang T, Hristovski K and Westerhoff P 2013 Appl. Catal. B Environ. 136–137 4049

    Google Scholar 

  49. Tan T, Beydoun D and Amal R 2003 J. Photochem. Photobiol. A Chem. 159 27350

    Article  CAS  Google Scholar 

  50. Ma M, Yang Y, Chen Y, Ma Y, Lyu P, Cui A et al 2021 J. Alloys Compd. 861 15825651

    Google Scholar 

  51. Rengaraj S and Li X Z 2007 Chemosphere 66 93052

    Article  CAS  Google Scholar 

  52. Dada A O, Olakekan A P, Olatunya A M and Dada O 2012 J. Appl. Chem. 3 3853

    Google Scholar 

  53. Ren Y, Abbood H A, He F, Peng H and Huang K 2013 Chem. Eng. J. 226 30054

    Article  CAS  Google Scholar 

  54. Zhang L, Li H, Liu Y, Tian Z, Yang B, Sun Z et al 2014 RSC Adv. 4 4870355

    Google Scholar 

  55. Chen F, Liu Z, Liu Y, Fang P and Dai Y 2013 Chem. Eng. J. 221 28356

    Google Scholar 

  56. Chen F, Fang P, Gao Y, Liu Z, Liu Y and Dai Y 2012 Chem. Eng. J. 204 107

    Article  CAS  Google Scholar 

  57. Zhang Z, Wang G, Li W, Zhang L, Chen T and Ding L 2020 Colloids Surfaces A Physicochem. Eng. Asp. 601 12503458

    Google Scholar 

  58. Azari A, Mahmoudian M H, Niari M H, Eş I, Dehganifard E, Kiani A et al 2019 Microchem. J. 150 10414459

    Article  CAS  Google Scholar 

  59. Choudhary B and Paul D 2018 J. Environ. Chem. Eng. 6 2335

    Article  CAS  Google Scholar 

  60. Greluk M and Hubicki Z 2010 Chem. Eng. J. 162 919

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support by University of Birjand to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zeraatkar Moghaddam.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorri, H., Zeraatkar Moghaddam, A., Ghiamati, E. et al. A comprehensive study on the adsorption-photocatalytic processes using manganese oxide-based magnetic nanocomposite with different morphology as adsorbent-photocatalyst in degradation of azo dyes under UV irradiation. Bull Mater Sci 44, 258 (2021). https://doi.org/10.1007/s12034-021-02539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02539-7

Keywords

Navigation