Skip to main content
Log in

The surface wettability of TiO2 nanotube arrays: which is more important—morphology or chemical composition?

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The wettability of TiO2 nanotube arrays (TiO2-NTAs) synthesized by electrochemical anodization was intensively investigated. It was found that annealing temperature of TiO2-NTAs has significant effect on the hydrophilicity of TiO2-NTAs. With the increase of annealing temperature, the fluorine element content on TiO2-NTAs surface decreases, which results in decrease in water contact angle and increase in hydrophilicity for TiO2-NTAs. The reason is that F ions escape from the lattice and oxygen vacancies are created at the two coordinated oxygen bridging sites at TiO2-NTAs surface after annealing in argon atmosphere. And these defects can in turn increase the affinity for hydroxyl ions formed by dissociation of chemisorbed water molecules and thereby form hydrophilic domains. In addition, TiO2 crystal becomes well organized gradually with the increase of annealing temperature, F ions are not favored to exist in the lattice and thus escape from the lattice. Less F element content results in better hydrophilicity of TiO2-NTAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.S. Tung, W.A. Daoud, J. Mater. Chem. 21, 7858–7869 (2011)

    Article  CAS  Google Scholar 

  2. Y. Masuda, K. Kato, Thin Solid Films 516, 2547–2552 (2008)

    Article  CAS  Google Scholar 

  3. I.P. Parkin, R.G. Palgrave, J. Mater. Chem. 15, 1689–1695 (2005)

    Article  CAS  Google Scholar 

  4. R.M. Fillion, A.R. Riahi, A. Edrisy, Renew. Sustain. Energy Rev. 32, 797–809 (2014)

    Article  CAS  Google Scholar 

  5. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  6. F.T. Li, Y. Zhao, Y.J. Hao, X.-J. Wang, R.-H. Liu, D.-S. Zhao, D.-M. Chen, J. Hazard. Mater. 239–240, 118–127 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. S. Singh, H. Mahalingam, P.K. Singh, Appl. Catal. A 462–463, 178–195 (2013)

    Article  CAS  Google Scholar 

  8. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  9. K. Midtdal, B.P. Jelle, Sol. Energy Mater. Sol. Cells 109, 126–141 (2013)

    Article  CAS  Google Scholar 

  10. A. Olad, S. Behboudi, A.A. Entezami, Bull. Mater. Sci. 35, 801–809 (2012)

    Article  CAS  Google Scholar 

  11. R. Nosrati, A. Olad, H. Najjari, Surf. Coat. Technol. 316, 199–209 (2017)

    Article  CAS  Google Scholar 

  12. Y. Lai, Y. Tang, J. Gong, D. Gong, L. Chi, C. Lin, Z. Chen, J. Mater. Chem. 22, 420–7426 (2012)

    Google Scholar 

  13. Z. Hu, X. Zhang, Z. Liu, K. Huo, P.K. Chu, J. Zhai, L. Jiang, Adv. Funct. Mater. 24, 6381–6388 (2014)

    Article  CAS  Google Scholar 

  14. Y. Lai, J. Huang, J. Gong, Y. Huang, C. Wang, Z. Chen, C. Lin, J. Electrochem. Soc. 156, D480–D484 (2009)

    Google Scholar 

  15. X.T. Zhang, M. Jin, Z.Y. Liu, D.A. Tryk, S. Nishimoto, T. Murakami, A. Fujishima, J. Phys. Chem. C 111, 14521–14529 (2007)

    Article  CAS  Google Scholar 

  16. J.J. Park, D.Y. Kim, S.S. Latthe, J.G. Lee, M.T. Swihart, S.S. Yoon, ACS Appl. Mater. Interfaces 5, 6155–6160 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. J.Y. Huang, Y.K. Lai, F. Pan, L. Yang, H. Wang, K.Q. Zhang, H. Fuchs, L.F. Chi, Small 10, 4865–4873 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. S. Bekou, D. Mattia, Curr. Opin. Colloid Interface Sci. 16, 259–265 (2011)

    Article  CAS  Google Scholar 

  19. D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331–3334 (2001)

    Article  CAS  Google Scholar 

  20. M. Zhang, G. Yao, Y. Cheng, Y. Xu, L. Yang, J. Lv, S. Shi, X. Jiang, G. He, P. Wang, X. Song, Z. Sun, Appl. Surf. Sci. 356, 546–552 (2015)

    Article  CAS  Google Scholar 

  21. Y. Sun, K. Yan, G. Wang, W. Guo, T. Ma, J. Phys. Chem. C 115, 12844–12849 (2011)

    Article  CAS  Google Scholar 

  22. H.J. Li, X.B. Wang, Y.L. Song, Y.Q. Liu, Q.S. Li, L. Jiang, D.B. Zhu, Angew. Chem. Int. Ed. 40, 1743–1746 (2001)

    Article  CAS  Google Scholar 

  23. K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott, Soft Matter 5, 1386–1393 (2009)

    Article  CAS  Google Scholar 

  24. T. Verho, J.T. Korhonen, L. Sainiemi, V. Jokinen, C. Bower, K. Franze, S. Franssila, P. Andrew, O. Ikkala, R.H.A. Ras, Proc. Natl. Acad. Sci. USA 109, 10210–10213 (2012)

    Article  PubMed  Google Scholar 

  25. B. Munirathinam, H. Pydimukkala, N. Ramaswamy, L. Neelakantan, Appl. Surf. Sci. 355, 1245–1253 (2015)

    Article  CAS  Google Scholar 

  26. M. Sarraf, E. Zalnezhad, A.R. Bushroa, A.M.S. Hamouda, A.R. Rafieerad, B. Nasiri-Tabrizi, Ceram. Int. 41, 7952–7962 (2015)

    Article  CAS  Google Scholar 

  27. A.R. Rafieerad, E. Zalnezhad, A.R. Bushroa, A.M.S. Hamouda, M. Sarraf, B. Nasiri-Tabrizi, Surf. Coat. Technol. 265, 24–31 (2015)

    Article  CAS  Google Scholar 

  28. G.H. Liu, K. Du, K.Y. Wang, Appl. Surf. Sci. 388, 313–320 (2016)

    Article  CAS  Google Scholar 

  29. D.H. Shin, T. Shokuhfar, C.K. Choi, S.H. Lee, C. Friedrich, Nanotechnology 22 315704 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. C. Ottone, A. Lamberti, M. Fontana, V. Cauda, J. Electrochem. Soc. 161, D484–D488 (2014)

    Article  CAS  Google Scholar 

  31. V.C. Anitha, J.H. Lee, J. Lee, A.N. Banerjee, S.W. Joo, B.K. Min, Nanotechnology 26, 065102 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Lai, F. Pan, C. Xu, H. Fuchs, L. Chi, Adv. Mater. 25, 1682–1686 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. 11, 3–18 (2007)

    Article  CAS  Google Scholar 

  34. E. Binetti, Z.E. Koura, N. Patel, A. Dashora, A. Miotello, Appl. Catal. A 500, 69–73 (2015)

    Article  CAS  Google Scholar 

  35. N.J. DeYonker, K.A. Peterson, G. Steyl, A.K. Wilson, T.R. Cundari, J. Phys. Chem. A 111, 11269–11277 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Z.H. Yang, Z.J. Zhang, Y.L. Yuan, Y.Q. Huang, X.Y. Wang, X.Y. Chen, S.Y. Wei, Curr. Appl. Phys. 16, 905–913 (2016)

    Article  Google Scholar 

  37. E. Zalnezhad, E. Maleki, S.M. Banihashemian, J.W. Park, Y.B. Kim, M. Sarraf, A.A.D.M. Sarhan, S. Ramesh, Mater. Res. Bull. 78, 179–185 (2016)

    Article  CAS  Google Scholar 

  38. S. Banerjee, D.D. Dionysiou, S.C. Pillai, Appl. Catal. B 176, 396–428 (2015)

    Article  CAS  Google Scholar 

  39. A.A. Galuska, J.C. Uht, P.M. Adams, J.M. Coggi, J. Vac. Sci. Technol. A 2, 185–192 (1988)

    Article  Google Scholar 

  40. B. Bharti, S. Kumar, R. Kumar, Appl. Surf. Sci. 364, 51–60 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Natural Science Foundation of China [51402209], Natural Science Foundation of Shanxi Province [201603D121017, 201601D102020, 2015021075], Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi [2016124], Program for Science and Technology Development of Shanxi [20140321012-01], Shanxi Provincial Key Innovative Research Team in Science and Technology [201605D131045-10], Zhejiang Provincial Science and Technology Key Innovation Team [2011R50012], and Key Laboratory [2013E10022], and Foundation of Taiyuan University of Technology [2015MS046].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinbo Xue or Husheng Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Wang, Z., Hu, W. et al. The surface wettability of TiO2 nanotube arrays: which is more important—morphology or chemical composition?. J Porous Mater 26, 91–98 (2019). https://doi.org/10.1007/s10934-018-0616-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0616-1

Keywords

Navigation