Skip to main content
Log in

Facile fabrication of multifunctional monolithic polyamide aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The polyamide (PA) aerogels with good-formability via a sol–gel technology were facilely fabricated by using melamine and aroyl chloride followed by CO2 supercritical drying. The synthesis procedure was straightforward and simple, relying on no nitrogen-based protective atmosphere. The influences of aroyl chloride monomer on the gelation time and aerogel structure were discussed. The structural properties of PA aerogels were characterized by the scanning electron microscopy (SEM) and Brunauer–Emmett–Teller methods (BET). The results indicated that the PA aerogels had a typical three-dimensional porous structure. The PA aerogels exhibited well multifunctional properties, such as flame resistance, thermal insulation, dielectric characteristics and mechanical properties. Due to well multifunctional properties, the PA aerogels had potential for the use in construction and building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Du, B. Zhou, Z. Zhang, J. Shen, A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 6, 941 (2013)

    Article  CAS  Google Scholar 

  2. A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev 102, 4243–4266 (2002)

    Article  CAS  Google Scholar 

  3. J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose et al., Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656–667 (2011)

    Article  CAS  Google Scholar 

  4. Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Metal–Organic frameworks as platforms for functional materials. Acc. Chem. Res 49, 483–493 (2016)

    Article  CAS  Google Scholar 

  5. C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev 45, 517–531 (2016)

    Article  CAS  Google Scholar 

  6. K. Sakaushi, M. Antonietti, Carbon- and nitrogen-based porous solids: A recently emerging class of materials. Bull. Chem. Soc. Jpn 88, 386–398 (2015)

    Article  CAS  Google Scholar 

  7. V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F.-K. Shieh, K.C.W. Wu et al., Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn 88, 1171–1200 (2015)

    Article  CAS  Google Scholar 

  8. E. Yamamoto, K. Kuroda, Colloidal mesoporous silica nanoparticles. Bull. Chem. Soc. Jpn 89, 501–539 (2016)

    Article  CAS  Google Scholar 

  9. N. Leventis, C. Sotiriou-Leventis, G. Zhang, A-M.M. Rawashdeh, Nanoengineering strong silica aerogels. Nano Lett. 2, 957–960 (2002)

    Article  CAS  Google Scholar 

  10. S.M. Jones, Aerogel: Space exploration applications. J. Sol-Gel Sci. Technol. 40, 351–357 (2006)

    Article  CAS  Google Scholar 

  11. P.C. Thapliyal, K. Singh, Aerogels as promising thermal insulating materials: An overview. J. Mater 2014, 10 (2014)

    Google Scholar 

  12. L.W. Hrubesh, Aerogel applications. J. Non-Cryst. Solids 225, 335–342 (1998)

    Article  CAS  Google Scholar 

  13. A.P. Rao, A.V. Rao, UKH Bangi, Low thermalconductive, transparent and hydrophobic ambient pressure dried silica aerogels with various preparation conditions using sodium silicate solutions. J. Sol-Gel Sci. Technol. 47, 85–94 (2008)

    CAS  Google Scholar 

  14. V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou, Proceedings of the Fourth International Symposium on AEROGELSAcoustic properties and potential applications of silica aerogels. J. Non-Cryst. Solids 186, 244–255 (1995)

    Article  CAS  Google Scholar 

  15. J. Lee, H. Jeong, S. Kang, Derivative and GA-based methods in metamodeling of back-propagation neural networks for constrained approximate optimization. Struct. Multidiscip. Optim. 35, 29–40 (2008)

    Article  Google Scholar 

  16. J.K. Lee, G.L. Gould, W. Rhine, Polyurea based aerogel for a high performance thermal insulation material. J. Sol-Gel Sci. Technol 49, 209–220 (2009)

    Article  CAS  Google Scholar 

  17. N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z.J. Larimore, H. Lu et al., Multifunctional polyurea aerogels from isocyanates and water. A structure–property case study. Chem. Mater 22, 6692–6710 (2010)

    Article  CAS  Google Scholar 

  18. G. Biesmans, A. Mertens, L. Duffours, T. Woignier, J. Phalippou, Polyurethane based organic aerogels and their transformation into carbon aerogels. J. Non-Cryst. Solids 225, 64–68 (1998)

    Article  CAS  Google Scholar 

  19. C. Daniel, S. Giudice, G. Guerra, Syndiotatic polystyrene aerogels with β, γ, and ε crystalline phases. Chem. Mater 21, 1028–1034 (2009)

    Article  CAS  Google Scholar 

  20. P. Lorjai, T. Chaisuwan, S. Wongkasemjit, Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J. Sol-Gel Sci. Technol 52, 56–64 (2009)

    Article  CAS  Google Scholar 

  21. H. Guo, MAB Meador, L. McCorkle, D.J. Quade, J. Guo, B. Hamilton et al., Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl. Mater. Interfaces 4, 5422–5429 (2012)

    Article  CAS  Google Scholar 

  22. N. Leventis, C. Chidambareswarapattar, D.P. Mohite, Z.J. Larimore, H. Lu, C. Sotiriou-Leventis, Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates. J. Mater. Chem 21, 11981–11986 (2011)

    Article  CAS  Google Scholar 

  23. J.C. Williams, MAB Meador, L. McCorkle, C. Mueller, N. Wilmoth, Synthesis and properties of step-growth polyamide Aerogels cross-linked with triacid chlorides. Chem. Mater 26, 4163–4171 (2014)

    Article  CAS  Google Scholar 

  24. S. He, Y. Zhang, X. Shi, Y. Bi, X. Luo, L. Zhang, Rapid and facile synthesis of a low-cost monolithic polyamide aerogel via sol–gel technology. Mater. Lett 144, 82–84 (2015)

    Article  CAS  Google Scholar 

  25. S. He, Y. Bi, Y. Zhang, H. Cao, X. Shi, X. Luo et al., One-pot synthesis and characterization of acid-catalyzed melamine formaldehyde/SiO2 aerogel via sol–gel technology. J. Sol-Gel Sci. Technol 74, 175–180 (2014)

    Article  Google Scholar 

  26. H. Ren, J. Zhu, Y. Bi, Y. Xu, L. Zhang. One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process. J. Sol-Gel Sci. Technol. 2016:1–7.

  27. J. Zhu, X. Yang, Z. Fu, J. He, C. Wang, W. Wu et al., Three-dimensional macroassembly of sandwich-like, hierarchical, porous carbon/graphene nanosheets towards ultralight, superhigh surface area, multifunctional aerogels. Chem. Eur. J 22, 2515–2524 (2016)

    Article  CAS  Google Scholar 

  28. J. Zhu, X. Yang, Z. Fu, C. Wang, W. Wu, L. Zhang, Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials. J. Porous Mater 23, 1217–1225 (2016)

    Article  CAS  Google Scholar 

  29. H. Ren, J. Zhu, Y. Bi, Y. Xu, L. Zhang, Facile fabrication of flexible graphene/porous carbon microsphere hybrid films and their application in supercapacitors. RSC Adv 6, 89140–89147 (2016)

    Article  CAS  Google Scholar 

  30. X. Shi, J. Zhu, Y. Zhang, S. He, Y. Bi, L. Zhang, Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors. RSC Adv. 5, 77130–77137 (2015)

    Article  CAS  Google Scholar 

  31. H. Ren, X. Shi, J. Zhu, Y. Zhang, Y. Bi, L. Zhang, Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci 51, 6419–6427 (2016)

    Article  CAS  Google Scholar 

  32. J. Zhu, J. He, Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)

    Article  CAS  Google Scholar 

  33. X. Hao, G. Gai, J. Liu, Y. Yang, Y. Zhang, C-w Nan, Flame retardancy and antidripping effect of OMT/PA nanocomposites. Mater. Chem. Phys 96, 34–41 (2006)

    Article  CAS  Google Scholar 

  34. T. Kashiwagi, R.H. Harris Jr., X. Zhang, R.M. Briber, B.H. Cipriano, S.R. Raghavan et al., Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer 45, 881–891 (2004)

    Article  CAS  Google Scholar 

  35. H. Qin, Q. Su, S. Zhang, B. Zhao, M. Yang, Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer 44, 7533–7538 (2003)

    Article  CAS  Google Scholar 

  36. B.X. Du, Z.X. Liu, Y.G. Guo, Effect of direct fluorination on surface charge of polyimide films using repetitive pulsed power. IEEE. Trans. Dielectr. Electrical Insul. 22, 1777–1784 (2015)

    Article  CAS  Google Scholar 

  37. S.-J. Park, K.-S. Cho, S.-H. Kim, A study on dielectric characteristics of fluorinated polyimide thin film. J. Colloid Interface Sci. 272, 384–390 (2004)

    Article  CAS  Google Scholar 

  38. S.-J. Park, H.-S. Kim, F.-L. Jin, Influence of fluorination on surface and dielectric characteristics of polyimide thin film. J. Colloid Interface Sci. 282, 238–240 (2005)

    Article  CAS  Google Scholar 

  39. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. 124, 11533–11537 (2012)

    Article  Google Scholar 

  40. H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater 25, 2554–2560 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51502274), the Doctoral Research Fund of Southwest University of Science and Technology (No. 15zx7137, 16zx7142), and the Research Fund for Joint Laboratory for Extreme Conditions Matter Properties (No. 13zxjk04, 14tdjk03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Ren or Lin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Zhu, J., Bi, Y. et al. Facile fabrication of multifunctional monolithic polyamide aerogels. J Porous Mater 24, 1165–1173 (2017). https://doi.org/10.1007/s10934-016-0356-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0356-z

Keywords

Navigation