Skip to main content
Log in

Alkali metal modified nano-silicalite-1: an efficient catalyst for transesterification of triacetin

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline Silicalite-1 was synthesized by conventional hydrothermal method and transformed into efficient solid base catalyst by modification with alkali metals like lithium, potassium and cesium. The synthesized and modified catalyst was characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption/desorption, Infra-red spectroscopy, thermogravimetry and basicity determination. The catalysts were tested for transesterification reaction of short triglyceride triacetin with methanol. 1–3 wt% alkali metal ions have been loaded on nano Silicalite-1 and used for transesterification reaction. Among the tested catalyst, 3 % potassium loaded Silicalite-1 (KS-3) showed highest reactivity giving 94 % triacetin conversion, and 98 mol% selectivity for methyl acetate. Reaction parameters such as triglyceride/alcohol molar ratio, catalyst amount, time and temperature were optimized with KS-3 catalyst. Kinetic studies were also done and found that transesterification of triacetin follows first order dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z. Yang, W. Xie, Fuel Process. Technol. 88, 631 (2007)

    Article  CAS  Google Scholar 

  2. G.J. Suppes, M.A. Dasari, E.J. Doskocil, P.J. Mankidy, M.J. Goff, Appl. Catal. A Gen. 257, 213 (2004)

    Article  CAS  Google Scholar 

  3. U. Meyer, W.F. Hoelderich, Appl. Catal. A Gen. 178, 159 (1999)

    Article  CAS  Google Scholar 

  4. A.P. Vyas, N. Subrahmanyam, P.A. Patel, Fuel 88, 625 (2009)

    Article  CAS  Google Scholar 

  5. P. Intarapong, A. Luengnaruemitchai, S.J. In, IJRER 4, 271 (2011)

    Google Scholar 

  6. Y. Du, S. Liu, Y. Ji, Y. Zhang, S. Wei, F. Liu, F. Xiao, Catal. Lett. 124, 133 (2008)

    Article  CAS  Google Scholar 

  7. G.S. Macala, A.W. Robertson, C.L. Johnson, Z.B. Day, R.S. Lewis, M.G. White, A.V. Iretskii, P.C. Ford, Catal. Lett. 122, 205 (2008)

    Article  CAS  Google Scholar 

  8. M.J. Kim, S.M. Park, D.R. Chang, G. Seo, Fuel Process. Technol. 91, 618 (2010)

    Article  CAS  Google Scholar 

  9. D.E. Lopez, J.G. Goodwin Jr, D.A. Bruce, E. Lotero, Appl. Catal. A Gen. 295, 97 (2005)

    Article  CAS  Google Scholar 

  10. A. Zieba, A. Drelinkiewicz, P. Chmielarz, L. Matachowski, J. Stejskal, Appl. Catal. A Gen. 387, 13 (2010)

    Article  CAS  Google Scholar 

  11. Y. Zhang, W. Wong, K. Yung, Appl. Energy 116, 191 (2014)

    Article  CAS  Google Scholar 

  12. H. Kazemian, B. Turowec, M.N. Siddiquee, S. Rohani, Fuel 103, 719 (2013)

    Article  CAS  Google Scholar 

  13. P. Shah, A.V. Ramaswamy, K. Lazar, V. Ramaswamy, Appl. Catal. A Gen. 273, 239 (2004)

    Article  CAS  Google Scholar 

  14. S. Yang, A. Navrotsky, D.J. Wesolowski, J.A. Pople, Chem. Mater. 16, 210 (2004)

    Article  CAS  Google Scholar 

  15. A. Aerts, L.R.A. Follens, M. Haouas, T.P. Caremans, M.D. Loppinet, J.V. Goderis, F. Taulelle, J.A. Martens, C.E.A. Kirschhock, Chem. Mater. 19, 3448 (2007)

    Article  CAS  Google Scholar 

  16. K. Iwakai, T. Tago, H. Konno, Y. Nakasaka, T. Masuda, Microporous Mesoporous Mater. 141, 167 (2011)

    Article  CAS  Google Scholar 

  17. A.P. Singh, T. Selvam, J. Mol. Catal. A: Chem. 113, 489 (1996)

    Article  CAS  Google Scholar 

  18. M.G. Clerici, P. Ingallina, J. Catal. 140, 71 (1992)

    Article  Google Scholar 

  19. B. Guo, L. Zhu, X. Hu, Q. Zhang, D. Tong, G. Li, C. Hu, Catal. Sci. Technol. 1, 1060 (2011)

    CAS  Google Scholar 

  20. P. Niphadkar, M. Kotwal, S. Deshpande, V. Bokade, P. Joshi, Mater. Chem. Phys. 114, 344 (2009)

    Article  CAS  Google Scholar 

  21. M. Mantegazza, A. Cesana, M. Pastori, Top. Catal. 3, 327 (1996)

    Article  Google Scholar 

  22. T. Sooknoi, V. Chitranuwatkul, J. Mol. Catal. A Chem. 236, 220 (2005)

    Article  CAS  Google Scholar 

  23. X. Ma, J. Gong, S. Wang, F. He, H. Guo, X. Yang, G. Xu, J. Mol. Catal. A: Chem. 237, 1 (2005)

    Article  CAS  Google Scholar 

  24. A. Macario, G. Giordano, L. Setti, A. Parise, J.M. Campelo, J.M. Marinas, D. Luna, Biocatal. Biotransform. 25, 328 (2007)

    Article  CAS  Google Scholar 

  25. J. Wang, D.M. Do, G.K. Chuah, S. Jaenicke, ChemCatChem. 5, 247 (2013)

    Article  CAS  Google Scholar 

  26. K. Hemalatha, G. Madhumitha, A. Kajbafvala, N. Anupama, R. Sompalle, S. M. Roopan, J. Nanomater. 2013, 341015 (2013). doi:10.1155/2013/341015

  27. Y. Deng, S. Yin, C. Au, Ind. Eng. Chem. Res. 51, 9492 (2012)

    Article  CAS  Google Scholar 

  28. J. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, California, 1991), pp. 55–63

    Google Scholar 

  29. R. Gomes, A. Bhaumik, J. Solid State Chem. 222, 7 (2015)

    Article  CAS  Google Scholar 

  30. V. Brahmkhatri, A. Patel, Ind. Eng. Chem. Res. 50, 6620 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barot, S., Nawab, M. & Bandyopadhyay, R. Alkali metal modified nano-silicalite-1: an efficient catalyst for transesterification of triacetin. J Porous Mater 23, 1197–1205 (2016). https://doi.org/10.1007/s10934-016-0178-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0178-z

Keywords

Navigation