Skip to main content
Log in

Influence of functionalization type on controlled release of emodin from mesoporous silica

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Emodin drug was introduced into the porous mesochannels of (γ-chloropropyl)triethoxysilicane (CPTES) and (3-aminopropyl)triethoxysilane (APTES) functionalized SBA-15 via a hydrothermal process. The pure, functionalized and drug loaded mesoporous materials were characterized by small angle X-ray powder diffraction, field scanning electron microscopy, high resolution transmission electron microscopy, nitrogen adsorption–desorption, Fourier transformed infrared spectra, and UV–visible spectrophotometry. The functionalization of mesoporous silica reduced the degree of crystallinity of the resulting material. High resolution transmission electron microscope images of the functionalized materials demonstrated the reservation of the hexagonal mesoporous structure of SBA-15. Pure, CPTES and APTES-functionalized mesoporous silica were employed as base materials for the controlled release of emodin drug. Drug loading results revealed that the loading capabilities largely depend on the specific surface area, and pore volume and pore diameter of the carrier matrix. Emodin drug release profiles were studied in phosphate buffered saline with pH 7.4, and outcomes specified that the drug release rate could be controlled by the surface CPTES and APTES-functionalized carrier matrices. Emodin loaded functionalized materials presented a lower release rate compared to that of the pure SBA-15. Emodin loaded APTES-functionalized SBA-15 presented the lowest release amount of 74.5 % even up to 60 h. These results propose that the functionalized mesoporous silica is a favorable drug carrier for accomplishing prolonged release time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  2. S. Jangra, P. Girotra, V. Chhokar, V.K. Tomer, A.K. Sharma, S. Duhan, J. Porous Mat. (2016). doi:10.1007/s10934-016-0123-1

    Google Scholar 

  3. S. Che, A.E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nat. Mater. 2, 801 (2003)

    Article  CAS  Google Scholar 

  4. P. Yang, Z. Quan, L. Lu, S. Huang, J. Lin, Biomaterials 29, 692 (2008)

    Article  CAS  Google Scholar 

  5. S. Wang, Microporous Mesoporous Mater. 117, 1 (2009)

    Article  CAS  Google Scholar 

  6. I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, V.S.-Y. Lin, Adv. Drug Deliv. Rev. 60, 1278 (2008)

    Article  CAS  Google Scholar 

  7. M. Vallet-Regi, A. Rámila, R.P. del Real, J. Pérez-Pariente, Chem. Mater. 13, 308 (2001)

    Article  CAS  Google Scholar 

  8. B. González, M. Colilla, C.L. de Laorden, M. Vallet-Regí, J. Mater. Chem. 19, 9012 (2009)

    Article  Google Scholar 

  9. S.-H. Cheng, C.-H. Lee, C.-S. Yang, F.-G. Tseng, C.-Y. Mou, L.-W. Lo, J. Mater. Chem. 19, 1252 (2009)

    Article  CAS  Google Scholar 

  10. T.X. Bui, H. Choi, J. Hazard. Mater. 168, 602 (2009)

    Article  CAS  Google Scholar 

  11. Z. Xu, Y. Ji, M. Guan, H. Huang, C. Zhao, H. Zhang, Appl. Surf. Sci. 256, 3160 (2010)

    Article  CAS  Google Scholar 

  12. F. Qu, H. Lin, X. Wu, X. Li, S. Qiu, G. Zhu, Solid State Sci. 12, 851 (2010)

    Article  CAS  Google Scholar 

  13. Y. Yang, W. Song, A. Wang, P. Zhu, J. Fei, J. Li, Phys. Chem. Chem. Phys. 12, 4418 (2010)

    Article  CAS  Google Scholar 

  14. M. Van Speybroeck, V. Barillaro, T. Do Thi, R. Mellaerts, J. Martens, J. Van Humbeeck, J. Vermant, P. Annaert, G. Van den Mooter, P. Augustijns, J. Pharm. Sci. 98, 2648 (2009)

    Article  Google Scholar 

  15. S.-W. Song, K. Hidajat, S. Kawi, Langmuir 21, 9568 (2005)

    Article  CAS  Google Scholar 

  16. Y. Xu, C. Wang, G. Zhou, Y. Wu, J. Chen, Appl. Surf. Sci. 258, 6366 (2012)

    Article  CAS  Google Scholar 

  17. J.-Q. Wang, L. Huang, M. Xue, Y. Wang, L. Gao, J.H. Zhu, Z. Zou, J. Phys. Chem. C 112, 5014 (2008)

    Article  CAS  Google Scholar 

  18. V.K. Tomer, R. Malik, S. Jangra, S.P. Nehra, S. Duhan, Mater. Lett. 132, 228 (2014)

    Article  CAS  Google Scholar 

  19. Q. Wei, Z.-R. Nie, Y.-L. Hao, L. Liu, Z.-X. Chen, J.-X. Zou, J. Sol-Gel. Sci. Technol. 39, 103 (2006)

    Article  CAS  Google Scholar 

  20. K.A. Fisher, K.D. Huddersman, M.J. Taylor, Chemistry 9, 5873 (2003)

    Article  CAS  Google Scholar 

  21. V.K. Tomer, S. Jangra, R. Malik, S. Duhan, Colloids Surf. A: Physicochemical and Engg. Aspects, 466, 160 (2015)

    Article  CAS  Google Scholar 

  22. S.-C. Shen, W.K. Ng, L. Chia, J. Hu, R.B.H. Tan, Int. J. Pharm. 410, 188 (2011)

    Article  CAS  Google Scholar 

  23. Q.-Z. Zhai, Mater. Sci. Eng. C 32, 2411 (2012)

    Article  CAS  Google Scholar 

  24. X. Wang, Y.-H. Tseng, J.C.C. Chan, S. Cheng, Microporous Mesoporous Mater. 85, 241 (2005)

    Article  CAS  Google Scholar 

  25. A. Katiyar, S. Yadav, P.G. Smirniotis, N.G. Pinto, J. Chromatogr. A 1122, 13 (2006)

    Article  CAS  Google Scholar 

  26. H. Zhang, J. Sun, D. Ma, X. Bao, A. Klein-Hoffmann, G. Weinberg, D. Su, R. Schlögl, J. Am. Chem. Soc. 126, 7440 (2004)

    Article  CAS  Google Scholar 

  27. V. Meynen, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 125, 170 (2009)

    Article  CAS  Google Scholar 

  28. F.J.V.E. Oliveira, M.A. Melo, C. Airoldi, Mater. Res. Bull. 48, 1045 (2013)

    Article  CAS  Google Scholar 

  29. N. Navascués, C. Téllez, J. Coronas, Microporous Mesoporous Mater. 112, 561 (2008)

    Article  Google Scholar 

  30. H. Wang, X. Gao, Y. Wang, J. Wang, X. Niu, X. Deng, Ceram. Int. 38, 6931 (2012)

    Article  CAS  Google Scholar 

  31. B. Shi, Y. Wang, Y. Guo, Y. Wang, Y. Wang, Y. Guo, Z. Zhang, X. Liu, G. Lu, Catal. Today 148, 184 (2009)

    Article  CAS  Google Scholar 

  32. H. Kim, J.C. Jung, P. Kim, S.H. Yeom, K.-Y. Lee, I.K. Song, J. Mol. Catal. A Chem. 259, 150 (2006)

    Article  CAS  Google Scholar 

  33. D. Zhao, J. Sun, Q. Li, G.D. Stucky, Chem. Mater. 12, 275 (2000)

    Article  CAS  Google Scholar 

  34. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41, 207 (1998)

    Article  CAS  Google Scholar 

  35. J. Rouquerol, F. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic Press, Cambridge, 1998)

    Google Scholar 

  36. P. Horcajada, A. Rámila, J. Pérez-Pariente, M. Vallet-Regí, Microporous Mesoporous Mater. 68, 105 (2004)

    Article  CAS  Google Scholar 

  37. F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, S. Qiu, Microporous Mesoporous Mater. 92, 1 (2006)

    Article  CAS  Google Scholar 

  38. Z. Jin, H. Liang, J. Dispers. Sci. Technol. 31, 654 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to UGC, New Delhi (Grant No. 41-997/2012(SR)) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender Duhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangra, S., Chhokar, V., Tomer, V.K. et al. Influence of functionalization type on controlled release of emodin from mesoporous silica. J Porous Mater 23, 1047–1057 (2016). https://doi.org/10.1007/s10934-016-0162-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0162-7

Keywords

Navigation