Skip to main content
Log in

Rapid prototyping assisted fabrication of patient specific β-tricalciumphosphate scaffolds for bone tissue regeneration

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Beta Tri calcium phosphate scaffolds were produced by inverse casting methodology using rapid prototyping technology. Β-TCP scaffold sintered at different temperatures were analyzed by using Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, uniaxial compression test and cytotoxicity test. Results incorporate scaffold pore size, bonding, phase chance, porosity, mechanical strength, and cytotoxic profile with an increase in the sintering temperatures. Together, these properties are required for scaffold fabrication in the field of bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6), 679–689 (2001)

    Article  CAS  Google Scholar 

  2. W. Sun, P. Lal, Recent development on computer aided tissue engineering. Comput. Methods Programs Biomed. 67, 85–103 (2000)

    Article  Google Scholar 

  3. E. Sachlos, J.T. Czernuszka, Making tissue engineering scaffold work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cells Mater. 5, 29–40 (2003)

    CAS  Google Scholar 

  4. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for Tissue Engineering applications. Bio Mater. 23, 1169–1185 (2001)

    Google Scholar 

  5. Z. Chen, D. Li, B. Lu, Y. Tang, M. Sun, S. Xu, Fabrication of osteo-structure analogous scaffolds via fused deposition modeling. Scr. Mater. 52, 157–161 (2005)

    Article  CAS  Google Scholar 

  6. S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C 23, 611–620 (2003)

    Article  Google Scholar 

  7. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22(7), 354–362 (2004)

    Article  CAS  Google Scholar 

  8. R. Landers, A. Pfister, U. Hubner, H. John, R. Schmelzeisen, R. Mulhaupt, Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37, 3107–3116 (2002)

    Article  CAS  Google Scholar 

  9. F.H. Liu, R.T. Lee, W.H. Lin, Y.S. Liao, Selective laser sintering of bio-metal scaffold. Proc. CIRP 5, 83–87 (2013)

    Article  Google Scholar 

  10. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Bio Mater. 26, 4817–4827 (2005)

    CAS  Google Scholar 

  11. F.H. Liu, Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol Gel. Sci. Technol. 64, 704–710 (2012)

    Article  CAS  Google Scholar 

  12. F.L.C. Santos, A.P. Silva, L. Lopes, I. Pires, J.I. Correia, Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater. Sci. Eng. C 32, 1293–1298 (2012)

    Article  CAS  Google Scholar 

  13. S. Maleksaeedi, J.K. Wang, A.E. Hajje, L. Harb, V. Guneta, Z. He, F.E. Wiria, C. Choong, A.J. Ruys, Towards 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone in growth. Proc. CIRP 5, 158–163 (2013)

    Article  Google Scholar 

  14. W. Sun, B. Starly, N.A. Darling, Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput. Aided Des. 37, 1097–1114 (2005)

    Article  Google Scholar 

  15. L. Luilan, H. Xianxu, H. Qingxi, F. Minglun, Fabrication of tissue engineering scaffold via rapid prototyping machine, in International Technology and Innovation Conference (2006), pp. 1280–1285

  16. Q. Wang, Q. Wang, C. Wan, The effect of porosity on the structure and properties of calcium polyphosphate bioceramics. Ceramics-Silikáty 55(1), 43–48 (2010)

    Google Scholar 

  17. Z. Xiong, Y. Yan, S. Wang, R. Zhang, C. Zhang, Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater. 46, 771–776 (2002)

    Article  CAS  Google Scholar 

  18. T. Serra, J.A. Planell, M. Navarro, High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521–5530 (2013)

    Article  CAS  Google Scholar 

  19. Z. Li, X. Chen, N. Zhao, H. Dong, Y. Li, C. Lin, Stiff macro-porous bioactive glass -ceramic scaffold: fabrication by rapid prototyping template, characterization and in vitro bioactivity. Mater. Chem. Phys. 141, 76–80 (2013)

    Article  CAS  Google Scholar 

  20. M.S.M. Arsad, P.M. Lee, Synthesis and characterization of hydroxyapatite nanoparticles and β-TCP particles, in 2nd International Conference on Biotechnology and Food Science, vol. 7 (2011), pp. 184–188

  21. J.P. Li, J.R. Wijn, C.A.V. Blitterswijk, K.D. Groot, Porous Ti6Al4 V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Bio Mater. 27, 1223–1235 (2006)

    CAS  Google Scholar 

  22. J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Mueller, L.G. Griffith, Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 7(5), 557–572 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav S. Sapkal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Financial disclosure

This research was not supported by any funding organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapkal, P.S., Kuthe, A.M., Kashyap, R.S. et al. Rapid prototyping assisted fabrication of patient specific β-tricalciumphosphate scaffolds for bone tissue regeneration. J Porous Mater 23, 927–935 (2016). https://doi.org/10.1007/s10934-016-0150-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0150-y

Keywords

Navigation