Skip to main content

Advertisement

Log in

Indirect casting of patient-specific tricalcium phosphate zirconia scaffolds for bone tissue regeneration using rapid prototyping methodology

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Bio-composite scaffolds were fabricated by impregnating 10, 20, 30, 40 and 50% ZrO2 content with the β-TCP matrix to heal load bearing large size bone defects. The composite scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and mechanical testing. The in vitro degradation of scaffolds was calculated by immersing the samples in phosphate buffer saline for a period of 21 days. Biocompatibility was evaluated by XTT assay using human Osteosarcoma cell line (MG-63). Results include scaffold surface morphology, overall porosity, phase transformation, bonding, compressive strength, biodegradability and cytotoxicity with an increase in ZrO2 percentages. The conclusions proved that β-TCP scaffold with 30% ZrO2 content exhibits the best-required properties for the application in the field of bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.J. Matsumoto, S. An, T. Ishimoto, T. Nakano, T. Matsumoto, S. Imazato, Zirconia-hydroxyapatite composite material with microporous structure. Dent. Mater. 27, 205–212 (2011)

    Article  Google Scholar 

  2. S. An, T. Matsumoto, H. Miyajima, A. Nakahira, K. Kim, S. Imazoto, Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dent. Mater. 28, 1221–1231 (2012)

    Article  CAS  Google Scholar 

  3. D.C. Dunand, Processing of titanium foams. Adv. Eng. Mater. 6, 369–376 (2004)

    Article  CAS  Google Scholar 

  4. N. Kotobuki, K. Ioku, D. Kawagoe, H. Fujimori, S. Goto, H. Ohgushi, Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 26, 779–785 (2005)

    Article  CAS  Google Scholar 

  5. S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C 23, 611–620 (2003)

    Article  Google Scholar 

  6. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7), 354–362 (2004)

    Article  CAS  Google Scholar 

  7. A. Alizadeh, F. Moztarzadeh, S.N. Ostad, M. Azami, B. Geramizadeh, G. Hatam, D. Bizari, S.M. Tavangar, M. Vasei, J. Ai, Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering. Artif. Cells Nanomed. Biotechnol. 44(1), 66–73 (2014)

    Article  Google Scholar 

  8. K.R. Mohamed, A.M. Mohamed, H.H. Beherei, Synthesis and in vitro behavior of β-TCP zirconia/polymeric biocomposites for bio-applications. J. Genet. Eng. Biotechnol. 9, 111–119 (2011)

    Article  CAS  Google Scholar 

  9. L. Mosekilde, L. Mosekilde, Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7, 207–212 (1986)

    Article  CAS  Google Scholar 

  10. Y. Ichikawa, Y. Akagawa, H. Nikai, H. Tsuru, Tissue compatibility and stability of a new zirconia ceramic in vivo. J. Prosthet. Dent. 68(2), 322–326 (1992)

    Article  CAS  Google Scholar 

  11. L. Rimondini, L. Cerroni, A. Carrassi, P. Torricelli, Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int. J. Oral Maxillofac. Implants 17(6), 793–798 (2002)

    Google Scholar 

  12. B. Stadlinger, M. Hennig, E. Kuhlisch, R. Mai, Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. Int. J. Oral Maxillofac. Surg. 39(6), 585–592 (2010)

    Article  CAS  Google Scholar 

  13. Y. Akagawa, Y. Ichikawa, H. Nikai, H. Tsuru, Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J. Prosthet. Dent. 69(6), 599–604 (1993)

    Article  CAS  Google Scholar 

  14. R. Depprich, H. Zipprich, C. Naujoks, H. Wiesmann, S. Kiattavorncharoen, H. Lauer, U. Meyer, N. Kubler, J. Handschel, (2008), Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med. 4(1), 1

    Article  Google Scholar 

  15. M. Gahlert, S. Röhling, M. Wieland, C.M. Sprecher, H. Kniha, S. Milz, Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin. Oral Implants Res. 20(11), 1247–1253 (2009)

    Article  CAS  Google Scholar 

  16. O. Hoffmann, N. Angelov, G.-G. Zafiropoulos, S. Andreana, Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits. Int. J. Oral Maxillofac. Implants 27(2), 352–358 (2012)

    Google Scholar 

  17. P.F. Manicone, P.R. Iommetti, L. Raffaelli, An overview of zirconia ceramics: basic properties and clinical applications. J. Dent. 35(11), 819–826 (2007)

    Article  CAS  Google Scholar 

  18. U. Meyer, M. Buhner, A. Büchter, B. Kruse-Lösler, T. Stamm, H.P. Wiesmann, Fast element mapping of titanium wear around implants of different surface structures. Clin. Oral Implants Res. 17(2), 206–211 (2006)

    Article  Google Scholar 

  19. H. Tiainen, G. Eder, O. Nilsen, H.J. Haugen, Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds. Mater. Sci. Eng. C 32(6), 1386–1393 (2012)

    Article  CAS  Google Scholar 

  20. G. Levita, B. Cioni, G. Gallone, A. Lazzeri, Synthesis of bioactive hydroxyapatite-zirconia toughened composites for bone replacement. Adv. Sci. Technol. 57, 31–36 (2008)

    Article  Google Scholar 

  21. H.-W. Kim, S.-Y. Shin, H.-E. Kim, Y.-M. Lee, C.-P. Chung, H.-H. Lee, I.-C. Rhyu, Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. J. Biomater. Appl. 22(6), 485–504 (2008)

    Article  CAS  Google Scholar 

  22. Z. Evis, M. Usta, I. Kutbay, Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites. J. Eur. Ceram. Soc. 29(4), 621–628 (2009)

    Article  CAS  Google Scholar 

  23. J. Malmstrom, E. Adolfsson, L. Emanuelsson, P. Thomsen, Bone in growth in zirconia and hydroxyapatite scaffolds with identical macroporosity. J. Mater. Sci. Mater. Med. 19(9), 2983–2992 (2007)

    Article  Google Scholar 

  24. J.-Z. Yang, R. Sultana, X.-Z. Hu, P. Ichim, Novel layered hydroxyapatite/tri-calcium phosphate-zirconia scaffold composite with high bending strength for load-bearing bone implant application. Int. J. Appl. Ceram. Technol. 1(1), 22–30 (2013)

    Google Scholar 

  25. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2001)

    Article  Google Scholar 

  26. Z. Chen, D. Li, B. Lu, Y. Tang, M. Sun, S. Xu, Fabrication of osteo-structure analogous scaffolds via fused deposition modeling. Scr. Mater. 52, 157–161 (2005)

    Article  CAS  Google Scholar 

  27. S.K. Sarkar, B.T. Lee, Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J. Intern. Med. 30, 279–293 (2015)

    Article  Google Scholar 

  28. D.-W. Jang, Y.-H. Kim, B.-T. Lee, Microstructure control of TCP/TCP-(t-ZrO2/t-ZrO2 composites for artificial cortical bone. Mater. Sci. Eng. C 31(8), 1660–1666 (2011)

    Article  CAS  Google Scholar 

  29. D. Mondal, S. So-Ra, S.K. Sarkar, Y.K. Min, H.M. Yang, B.T. Lee, Fabrication of multilayer ZrO2-biphasic calcium phosphate-poly-caprolactone unidirectional channeled scaffold for bone tissue formation. J. Biomater. Appl. 28(3), 462–472 (2012)

    Article  Google Scholar 

  30. R. Landers, A. Pfister, U. Hubner, H. John, R. Schmelzeisen, R. Mulhaupt, Fabrication of soft-tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37, 3107–3116 (2002)

    Article  CAS  Google Scholar 

  31. P. Sapkal, A. Kuthe, R. Kashyap, A. Nayak, S. Kuthe, A. Kawle, Rapid prototyping assisted fabrication of patient-specific b-tricalcium phosphate scaffolds for bone tissue regeneration. J. Porous Mater. 23, 927 (2016)

    Article  CAS  Google Scholar 

  32. L. Liulan, H. Xianxu, H. Qingxi, F. Minglun, Fabrication of tissue engineering scaffold via rapid prototyping machine. In: International Technology and Innovation Conference, 1280–1285, (2006)

  33. Q. Wang, Q. Wang, C. Wan, The effect of porosity on the structure and properties of calcium polyphosphate bioceramics. Ceram.-Silik. 55(1), 43–48 (2010)

    Google Scholar 

  34. Z. Xiong, Y. Yan, S. Wang, R. Zhang, C. Zhang, Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater. 46, 771–776 (2002)

    Article  CAS  Google Scholar 

  35. T. Serra, J.A. Planell, M. Navarro, High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521–5530 (2013)

    Article  CAS  Google Scholar 

  36. N. Johari, M.H. Fathe, M.A. Golozar, E. Erfani, A. Samadikuchaksaraei, Poly(e-caprolactone)/nano fluoridated hydroxyapatite scaffolds for bone tissue engineering: in vitro degradation and biocompatibility study. J. Mater. Sci. 23, 763–770 (2012)

    CAS  Google Scholar 

  37. F.L.C. Santos, A.P. Silva, L. Lopes, I. Pires, J.I. Correia, Design and production of sintered b-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater. Sci. Eng. C 32, 1293–1298 (2012)

    Article  CAS  Google Scholar 

  38. Z. Li, X. Chen, N. Zhao, H. Dong, Y. Li, C. Lin, Stiff macroporous bioactive glass-ceramic scaffold: fabrication by rapid prototyping template, characterization and in vitro bioactivity. Mater. Chem. Phys. 141, 76–80 (2013)

    Article  CAS  Google Scholar 

  39. F. Lin, C. Yan, W. Zheng, W. Fan, C. Adam, A. Oloyede, Preparation of mesoporous bioglass coated zirconia scaffold for bone tissue engineering. Adv. Mater. Res. 365, 209–215 (2012)

    Article  CAS  Google Scholar 

  40. P. Sapkal, A. Kuthe, CAD-based approach for patient specific scaffold for bone tissue engineering, Trends Biomater. Artif. Organs 29(2), 301–305 (2015)

    Google Scholar 

  41. K. Prabhakaran, S. Kannan, S. Rajeswari, Development and characterization of zirconia and hydroxyapatite composites for orthopedic applications. Trends Biomater. Artif. Organs 18(2), 114–116 (2005)

    Google Scholar 

  42. J.P. Li, J.R. Wijn, C.A.V. Blitterswijk, K.D. Groot, Porous Ti6Al4 V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27, 1223–1235 (2006)

    Article  CAS  Google Scholar 

  43. S. Pattnaik, S. Nethala, A. Tripathi, S. Saravanan, A. Moorthi, N. Selvamurugan, Chitosan scaffolds containing silicon dioxide and zirconia nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 49(5), 1167–1172 (2011)

    Article  CAS  Google Scholar 

  44. T.A. Einhorn, The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355, S7–S21 (1998)

    Article  Google Scholar 

Download references

Financial disclosure

This research was not supported by any funding organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav S. Sapkal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapkal, P.S., Kuthe, A.M., Kashyap, R.S. et al. Indirect casting of patient-specific tricalcium phosphate zirconia scaffolds for bone tissue regeneration using rapid prototyping methodology. J Porous Mater 24, 1013–1023 (2017). https://doi.org/10.1007/s10934-016-0341-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0341-6

Keywords

Navigation