Skip to main content
Log in

Effect of annealing temperature on anodized nanoporous WO3

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nanoporous tungsten oxide (WO3) was produced on W foil by anodization method. The nanoporous WO3 thickness obtained was 450 nm with pore diameter size of 50–80 nm and pore wall thickness of 15–20 nm. The effect of annealing temperature (200–700 °C) on the morphological, structural, and electrochromic properties of nanoporous WO3 were reported. Nanoporous WO3 transformed from amorphous to monoclinic phase after annealing at 300 °C. The nanoporous structure was retained after annealing; however, the pore wall thickness increased with increasing annealing temperature. A compact oxide layer underneath the nanoporous layer was formed after annealing at 500 °C. The as-anodized oxide showed faster electron and ion intercalation process (with the highest current density of −11.53 and +7.73 mA cm−2) than the annealed oxides. Moreover, the current density decreased with increasing annealing temperature because the annealing process increased the crystallinity and reduced the surface area of the oxide. The as-anodized oxide also exhibited shorter coloring and bleaching times of ~7.4 and ~3.9 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Wang, E. Khoo, P.S. Lee, J. Ma, J. Phys. Chem. C 113, 9655–9658 (2009)

    Article  CAS  Google Scholar 

  2. H. Zhang, T. Liu, L. Huang, W. Guo, D. Liu, W. Zeng, Phys. E 44, 1467–1472 (2012)

    Article  CAS  Google Scholar 

  3. S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, A.C. Dillon, Adv. Mater. 18, 763–766 (2006)

    Article  CAS  Google Scholar 

  4. Y.-C. Nah, A. Ghicov, D. Kim, P. Schmuki, Electrochem. Commun. 10, 1777–1780 (2008)

    Article  CAS  Google Scholar 

  5. T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, L. Zan, J. Solid State Chem. 194, 250–256 (2012)

    Article  CAS  Google Scholar 

  6. C.-P. Li, F. Lin, R.M. Richards, C. Engtrakul, A.C. Dillon, R.C. Tenent, C.A. Wolden, Electrochem. Commun. 25, 62–65 (2012)

    Article  Google Scholar 

  7. J. Zhang, X.-L. Wang, Y. Lu, Y. Qiao, X.-H. Xia, J.-P. Tu, J. Solid State Electrochem. 15, 2213–2219 (2011)

    Article  Google Scholar 

  8. Z.S. Houweling, J.W. Geus, M. de Jong, P.-P.R.M.L. Harks, K.H.M. van der Werf, R.E.I. Schropp, Mater. Chem. Phys. 131, 375–386 (2011)

    Article  CAS  Google Scholar 

  9. S. Caramori, V. Cristino, L. Meda, A. Tacca, R. Argazzi, C.A. Bignozzi, Energy Procedia 22, 127–136 (2012)

    Article  CAS  Google Scholar 

  10. Y. Chai, C.W. Tam, K.P. Beh, F.K. Yam, Z. Hassan, J. Porous Mater. 20, 997–1002 (2013)

    Article  CAS  Google Scholar 

  11. N. Mukherjee, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Mater. Res. 18, 2296–2299 (2003)

    Article  CAS  Google Scholar 

  12. H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun. 7, 295–298 (2005)

    Article  CAS  Google Scholar 

  13. Y. Huang, Y.-Y. Liu, W.-Z. Li, Q.-Y. Chen, Acta Phys. Chim. Sin. 28, 865–870 (2012)

    CAS  Google Scholar 

  14. K.R. Reyes-Gil, C. Wiggenhorn, B.S. Brunschwig, N.S. Lewis, J. Phy. Chem. C 117, 14947–14957 (2013)

    Article  CAS  Google Scholar 

  15. Y.-C. Nah, I. Paramasivam, R. Hahn, N. Shrestha, K.P. Schmuki, Nanotechnology 21, 105704 (2010)

    Article  Google Scholar 

  16. T. Kamimori, J. Nagai, M. Mizuhashi, Sol. Energy Mater. 16, 27–38 (1987)

    Article  CAS  Google Scholar 

  17. Y. Shigesato, A. Murayama, T. Kamimori, K. Matsuhiro, Appl. Surf. Sci. 33–34, 804–811 (1988)

    Article  Google Scholar 

  18. J.V. Gabrusenoks, P.D. Cikmach, A.R. Lusis, J.J. Kleperis, G.M. Ramans, Solid State Ion 14, 25–30 (1984)

    Article  Google Scholar 

  19. J.Z. Ou, R.A. Rani, S. Balendhran, A.S. Zoolfakar, M.R. Field, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrochem. Commun. 27, 128–132 (2013)

    Article  CAS  Google Scholar 

  20. B. Pecquenard, H. Lecacheux, J. Livage, C. Julien, J. Solid State Chem. 135, 159–168 (1998)

    Article  CAS  Google Scholar 

  21. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc. 123, 10639–10649 (2001)

    Article  CAS  Google Scholar 

  22. M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz, J. Solid State Chem. 67, 235–247 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere appreciation for the financial support extended by MyBrain15 and Long Term Research Grant (OneBaja Project 304/PBAHAN/6050235) from the Ministry of Education Malaysia and PRGS 1001/PBAHAN/8044020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khairunisak Abdul Razak or Zainovia Lockman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.Y., Abdul Razak, K. & Lockman, Z. Effect of annealing temperature on anodized nanoporous WO3 . J Porous Mater 22, 537–544 (2015). https://doi.org/10.1007/s10934-015-9924-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9924-x

Keywords

Navigation