Skip to main content
Log in

Force fields for classical atomistic simulations of small gas molecules in silicalite-1 for energy-related gas separations at high temperatures

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

High temperature (>573 K) molecular dynamics studies of gas diffusion in microporous zeolites require consideration of the zeolite framework flexibility. Pore windows can expand and contract at high temperatures, affecting phase space and material properties. No studies to date have addressed the application of the condensed-phase optimized molecular potentials for atomistic simulation studies or the consistent valence force field to simulate gas diffusion and adsorption in siliceous MFI (silicalite-1). The current study seeks to validate these intramolecular and intermolecular potentials along with another zeolite-specific force field reported by Nicholas et al. (JACS 113:4792–4800, 1991) for silicalite-1, one of the most extensively investigated zeolites, with respect to diffusion of several gas molecules. The experimental diffusion coefficients of H2, CO2, CH4, O2 and N2 in silicalite-1 obtained using pulse-field gradient-nuclear magnetic resonance and quasi-elastic neutron scattering methods were compared to theoretically derived diffusion coefficients employing these force fields in molecular dynamics simulations. The diffusion coefficients obtained using the three force fields for H2, CO2, CH4, O2 and N2 agreed well with these experimental data. The zeolite-specific force field of Nicholas et al. was employed in grand canonical Monte Carlo simulations to obtain adsorption isotherms of these gases. The adsorption isotherms and isosteric heats of adsorption predicted were also in agreement with the expected range of available experimental and theoretical adsorption data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Xie, W. Li, W. Zhao, Coal chemical industry and its sustainable development in China. Energy 35(11), 4349–4355 (2010)

    Article  CAS  Google Scholar 

  2. United States Senate Committee on Energy and Natural Resources, Coal gasification: opportunities and challenges. http://www.gpo.gov/fdsys/pkg/CHRG-110shrg37273/html/CHRG-110shrg37273.htm, 2007

  3. D.S. Bhange, V. Ramaswamy, Thermal stability of the Mobil Five type metallosilicate molecular sieves—an in situ high temperature X-ray diffraction study. Mater. Res. Bull. 42(2), 851860 (2007)

    Google Scholar 

  4. N.K. Bär, H. Jobic, R. Kramer, Diffusion of hydrogen in various zeolites studied by pulsed-field gradient NMR and quasi-elastic neutron scattering techniques. in Proceedings of the 12th International Zeolite Conference, 1999, pp 77–84

  5. U. Hong, J. Karger, R. Kramer, PFG n.m.r. study of diffusion anisotropy in oriented ZSM-5 type zeolite crystallites. Zeolites 11(8), 816–821 (1991)

    Article  CAS  Google Scholar 

  6. H. Jobic, J. Karger, M. Bee, Simultaneous measurement of self- and transport diffusivities in zeolites. Phys. Rev. Lett. 82(21), 4260 (1999)

    Article  CAS  Google Scholar 

  7. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details of alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998)

    Article  CAS  Google Scholar 

  8. P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. PROTEINS Struct. Funct. Genet. 4, 31–47 (1988)

    Article  CAS  Google Scholar 

  9. D. Dubbeldam, S. Calero, T.J.H. Vlugt, United atom force field for alkanes in nanoporous materials. J. Phys. Chem. B 108(33), 12301–12313 (2004)

    Article  CAS  Google Scholar 

  10. J.G. Harris, K.H. Yung, Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99(31), 12021–12024 (1995)

    Article  CAS  Google Scholar 

  11. K. Makrodimitris, G.K. Papadopoulos, D.N. Theodorou, Prediction of permeation properties of CO2 and N2 through silicalite via molecular simulations. J. Phys. Chem. B 105, 777–778 (2001)

    Article  CAS  Google Scholar 

  12. M. Gallo, T.M. Nenoff, M.C. Mitchell, Selectivities for binary mixtres of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by grand canonical Monte Carlo techniques. Fluid Phase Equilib. 247(1–2), 135–142 (2006)

    Article  CAS  Google Scholar 

  13. C. Mellot, J. Lignieres, Monte carlo simulations of N2 and O2 adsorption in silicalite and CaLSX zeolites. Mol. Simul. 18(6), 349 (1997)

    Article  CAS  Google Scholar 

  14. D.I. Kopelevich, H. Chang, Diffusion of inert gases in silica sodalite: importance of lattice flexibility. J. Chem. Phys. 115(20), 9519–9527 (2001)

    Article  CAS  Google Scholar 

  15. H. Jobic, Diffusion studies using quasi-elastic neutron scattering, in Membrane Science and Technology: Recent Advances in Gas Separation by Microporous Ceramic Membranes, vol. 6, ed. by N.K. Kanellopoulos (Elsevier, Amsterdam, 2000), pp. 109–137

    Chapter  Google Scholar 

  16. J.B. Nicholas, A.J. Hopfinger, F.R. Trouw, Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field. J. Am. Chem. Soc. 113(13), 4792–4800 (1991)

    Article  CAS  Google Scholar 

  17. E. Jaramillo, S.M. Auerbach, New force field for Na cations in faujasite-type zeolites. J. Phys. Chem. B 103(44), 9589–9594 (1999)

    Article  CAS  Google Scholar 

  18. S. Calero, D. Dubbeldam, R. Krishna, Understanding the role of sodium during adsorption: a force field for alkanes in sodium-exchanged faujasites. J. Am. Chem. Soc. 109, 91–108 (2008)

    Google Scholar 

  19. R. Krishna, J.M. van Baten, Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Microporous Mesoporous Mater. 109, 91–108 (2008)

    Article  CAS  Google Scholar 

  20. R. Krishna, J.M. van Baten, Influence of segregated adsorption on mixture diffusion in DDR zeolite. Chem. Phys. Lett. 446, 344–349 (2007)

    Article  CAS  Google Scholar 

  21. Accelrys Inc. Materials Studio, vol. 4.2 (2007)

  22. G. De Luca, P. Pullumbi, G. Barbieri, Gusev and Suter calculation of the diffusion coefficients of light gases in silicalite-1 membrane and silica-sodalite zeolite. Sep. Purif. Technol. 36(3), 215–228 (2004)

    Article  Google Scholar 

  23. A.A. Gusev, U.W. Suter, Theory for solubility in static systems. Phys. Rev. A 43(12), 6488 (1991)

    Article  CAS  Google Scholar 

  24. K.S. Smirnov, D. Bougeard, Molecular dynamics study of the vibrations spectra of siliceous zeolites built from sodalite cages. J. Phys. Chem. 97(37), 9434–9940 (1993)

    Article  CAS  Google Scholar 

  25. F. Leroy, B. Rousseau, A.H. Fuchs, Self-diffusion of n-alkanes in silicalite using molecular dynamics simulation: a comparison between rigid and flexible frameworks. Phys. Chem. Chem. Phys. 6, 755–783 (2004)

    Article  Google Scholar 

  26. C. Baerlicher, L.B. McCusker, Database of Zeolite Structures (2010)

  27. W. Smith et al., The DL_POLY Molecular Simulation Package (Taylor & Francis, Warrington, 2006)

    Google Scholar 

  28. D. Dubbeldam, S. Calero, T.L.M. Maesen, Incommensurate diffusion in confined systems. Phys. Rev. Lett. 90(24), 245901 (2003)

    Article  CAS  Google Scholar 

  29. A. Gupta, S. Chempath, M.J. Sanborn, Object-oriented programming paradigms for molecular modeling. Mol. Simul. 29(1), 29 (2003)

    Article  CAS  Google Scholar 

  30. D. Wolf, P. Keblinski, S.R. Phillpot, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup-1] summation. J. Chem. Phys. 110(17), 8254–8282 (1999)

    Article  CAS  Google Scholar 

  31. W. Zhu, P. Hrabanek, L. Gora, Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind. Eng. Chem. Res. 45(2), 767–777 (2006)

    Article  CAS  Google Scholar 

  32. M.S. Sun, D.B. Shah, H.H. Xu, Adsorption equilibria of C1 to C4 Alkanes, CO2, and SF6 on silicalite. J. Phys. Chem. B 102(8), 1466–1473 (1998)

    Article  CAS  Google Scholar 

  33. T.C. Golden, S. Sircar, Gas adsorption on silicalite. J. Colloid Interface Sci. 162(1), 182–188 (1994)

    Article  CAS  Google Scholar 

  34. J.A. Dunne, R. Mariwala, M. Rao, Caloric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12(24), 5888–5895 (1996)

    Article  CAS  Google Scholar 

  35. A.I. Skoulidas, D.S. Sholl, Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe and SF6 in silicalite from atomistic simulations. J. Phys. Chem. B 106(19), 5058–5067 (2002)

    Article  CAS  Google Scholar 

  36. XMGRACE, Free Software Foundation, Inc., http://www.fsf.org

  37. F. Muller-Plathe, S.C. Rogers, W.F. van Gunsteren, Computational evidence for anomalous diffusion of small molecules in amorphous polymers. Chem. Phys. Lett. 199, 237–243 (1992)

    Article  Google Scholar 

  38. J. Karger, H. Pfeifer, F. Stallmach, 129Xe and 13C PFR NMR study of the intracrystalline self-diffusion of Xe, CO2, and CO. Zeolites 13, 50–55 (1993)

    Article  Google Scholar 

  39. H. Takaba, A. Yamamoto, K. Hayamizu, Gas diffusion in polycrystalline silicalite membranes investigated by 1H pulse field-gradient NMR. J. Phys. Chem. B 109(29), 13871–13876 (2005)

    Article  CAS  Google Scholar 

  40. N.K. Bar, H. Ernst, H. Jobic, Combined quasi-elastic neutron scattering and NMR study of hydrogen diffusion in zeolites. Magn. Reson. Chem. 37, S79–S83 (1999)

    Article  CAS  Google Scholar 

  41. Z. Zheng, V.V. Guliants, S. Misture, Sodalites as ultramicroporous frameworks for hydrogen separation at elevated temperatures: thermal stability, template removal, and hydrogen accessibility. J. Porous Mater. 16, 343–347 (2009)

    Article  CAS  Google Scholar 

  42. H. Jobic, D.N. Theodorou, Diffusion of long n-alkanes in silicalite: a comparison between neutron scattering experiments and hierarchical simulation results. J. Phys. Chem. B 110(5), 1964–1967 (2006)

    Article  CAS  Google Scholar 

  43. H. Takaba, A. Yamamoto, K. Hayamizu, Dependence of the diffusion coefficients of methane in silicalite on diffusion distance as investigated by 1H PFG NMR. Chem. Phys. Lett. 393, 87–91 (2004)

    Article  CAS  Google Scholar 

  44. H. Jobic, M. Bee, J. Caro, Molecular self-diffusion of methane in zeolite ZSM-5 by quasi-elastic neutron scattering and nuclear magnetic resonance pulsed field gradient technique. J Chem. Soc. Faraday Trans 1 Phys. Chem. Condens. Phases 85(12), 4201–4209 (1989)

    CAS  Google Scholar 

  45. G.K. Papadopoulos, H. Jobic, D.N. Theodorou, Transport diffusivity of N2 and CO2 in silicalite: coherent quasielasic neutron scattering measurements and molecular dynamics simulations. J. Phys. Chem. B 108(34), 12748–12756 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Guliants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guliants, V.V., Huth, A.J. Force fields for classical atomistic simulations of small gas molecules in silicalite-1 for energy-related gas separations at high temperatures. J Porous Mater 20, 741–751 (2013). https://doi.org/10.1007/s10934-012-9649-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9649-z

Keywords

Navigation