Skip to main content

Advertisement

Log in

Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Chironomid and ceratopogonid head capsules, along with Chaoborus mandibles, were used to model mean temperature of the warmest quarter (TWARM) in Tasmania. Our transfer function is based on midge assemblages and 21 environmental variables sampled from 47 lakes. Canonical correspondence analysis (CCA) revealed seven variables that account for a significant (P ≤ 0.05) portion of the explainable variance. In order of explanatory power, these were pH, TWARM, annual radiation, magnesium, annual precipitation, SiO2, and depth. TWARM was modeled using weighted averaging partial least squares (WA-PLS) and generated a model with \( r_{{\text{jack}}}^2 = 0.72 \) and RMSEP = 0.94. Advances in chironomid paleoecology are progressing very quickly in the Southern Hemisphere. Chironomid identification guides and autecological data are available for many regions, highlighting the potential for developing midge-based quantitative models to address hemispheric and interhemispheric climate hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alloway BV, Lowe DJ, Barrell DJA, Newnham RM, Almond PC, Augustinus PC, Bertler N, Carter L, Litchfield NJ, McGlone MS, Shulmeister J, Vandergoes MJ, Williams PW, NZ-INTIMATE Members (2007) Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). J Quat Sci 22:9–35. doi:10.1002/jqs.1079

    Article  Google Scholar 

  • Armitage P, Cranston PS, Pinder LCV (eds) (1995) The Chironomidae: the biology and ecology of non-biting midges. Chapman and Hall, London, 572 pp

  • Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K et al (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314. doi:10.1007/s10933-006-0014-6

    Article  Google Scholar 

  • Birks HJB (1998) Numerical tools in paleolimnology progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690

    Article  Google Scholar 

  • Birks HJB (2003) Quantitative palaeoenvironmental reconstructions from Holocene biological data. In: Mackay A, Battarbee R, Birks HJB, Oldfield F (eds) Global change in the holocene. Oxford University Press, New York, pp 107–123

    Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10

    Google Scholar 

  • Boubée JAP (1983) Past and present benthic fauna of Lake Maratoto, with special reference to the Chironomidae. Ph.D. thesis, University of Waikato, New Zealand, 151 pp

  • Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from lateglacial and Holocene sites in northwest Europe: progress and problems. Quat Sci Rev 20:1723–1741. doi:10.1016/S0277-3791(01)00038-5

    Article  Google Scholar 

  • Busby JR (1986) Bioclimatic prediction system (BIOCLIM) user’s manual version 2.0. Australian Biological Resources Study Leaflet

  • Busby JR (1991) BIOCLIM: a bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68

    Google Scholar 

  • Clapperton CM (1990) Quaternary glaciations in the Southern Hemisphere: an overview. Quat Sci Rev 9:299–304. doi:10.1016/0277-3791(90)90024-5

    Article  Google Scholar 

  • Colhoun EA (1985) Glaciations of the west coast range, Tasmania. Quat Res 24:39–59. doi:10.1016/0033-5894(85)90082-1

    Article  Google Scholar 

  • Colhoun EA, Shulmeister J (2006) Late Pleistocene of the south west Pacific region. In: Elias S (ed) Encyclopedia of quaternary science. Elsevier, pp 1066–1075

  • Colhoun EA, Pola JS, Barton CE, Heijnis H (1999) Late Pleistocene vegetation and climate history of Lake Selina, western Tasmania. Quat Int 57/58:5–23. doi:10.1016/S1040-6182(98)00046-9

  • Cranston PS (2000) Electronic guide to the chironomidae of Australia. http://www.science.uts.edu.au/sasb/chiropage/

  • Cranston PS, Dimitriadis S (2004) The Chironomidae (Diptera) larvae of Atherton Tableland Lakes, north Queensland. Mem Queensl Mus 49:573–588

    Google Scholar 

  • Dean WE Jr (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248

    Google Scholar 

  • Deevey ES (1955) Paleolimnology of the upper swamp deposit, Pyramid Valley. Rec Canterb Mus 6:291–344

    Google Scholar 

  • Dieffenbacher-Krall AC, Vandergoes MJ, Denton GH (2007) An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids. Quat Sci Rev 26:2487–2504. doi:10.1016/j.quascirev.2007.06.016

    Article  Google Scholar 

  • Dimitriadis S, Cranston PS (2001) An Australian Holocene climate reconstruction using Chironomidae from a tropical volcanic maar lake. Palaeogeogr Palaeoclimatol Palaeoecol 176:109–131. doi:10.1016/S0031-0182(01)00331-5

    Article  Google Scholar 

  • Dimitriadis S, Cranston PS (2007) From the mountains to the sea: assemblage structure and dynamics in Chironomidae (Insect:Diptera) in the Clyde River estuarine gradient, New South Wales, south-eastern Australia. Aust J Entomol 46:188–197. doi:10.1111/j.1440-6055.2007.00592.x

    Article  Google Scholar 

  • Elias SA (1997) The mutual climatic range method of palaeoclimate reconstruction based on insect fossils: new applications and interhemispheric comparisons. Quat Sci Rev 16:1217–1225. doi:10.1016/S0277-3791(97)00029-2

    Article  Google Scholar 

  • Freeman P (1961) The Chironomidae (Diptera) of Australia. Aust J Zool 9:611–737. doi:10.1071/ZO9610611

    Article  Google Scholar 

  • Fulton W (1983a) Macrobenthic fauna of Great Lake, Arthurs Lake and Lake Sorell, Tasmania. Aust J Mar Freshw Res 34:775–785. doi:10.1071/MF9830775

    Article  Google Scholar 

  • Fulton W (1983b) Qualitative and quantitative variation in the macrobenthic fauna of the original lake and new lake areas of Great Lake and Arthurs Lake, Tasmania. Aust J Mar Freshw Res 34:786–803

    Google Scholar 

  • Glew J (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287. doi:10.1007/BF00200351

    Article  Google Scholar 

  • Harrison SP (1993) Late Quaternary lake-level changes and climates of Australia. Quat Sci Rev 12:211–231. doi:10.1016/0277-3791(93)90078-Z

    Article  Google Scholar 

  • Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350. doi:10.1023/A:1017568913302

    Article  Google Scholar 

  • Houlder DJ, Hutchinson MF, Nix HA, McMahon JP (2000) ANUCLIM user guide, version 5.1. Centre for Resource and Environmental Studies, Australian National University, Canberra

    Google Scholar 

  • Jackson WD (2005) The Tasmanian environment. In: Reid JB, Hill RS, Brown MJ, Hovenden MJ (eds) Vegetation of Tasmania. Australian Biological Resources Study, Tasmania, pp 11–34

    Google Scholar 

  • Juggins S (2003) C2 software for ecological and paleoecological data analysis and visualisation. User guide version 1.4. University of Newcastle

  • Kershaw AP, Nanson GC (1993) The last full glacial cycle in the Australian region. Glob Planet Change 7:1–9. doi:10.1016/0921-8181(93)90036-N

    Article  Google Scholar 

  • Kim N, Han JK (1997) Assessing the integrity of cross-validation: a case for small sample-based research. Hong Kong University of Science and Technology, Department of Marketing, Working Paper Series no. MKTG 97.096

  • Kokkin M (1986) Identification of two Australian salt-lake chironomid species from subfossil larval head capsules. Palaeogeogr Palaeoclimatol Palaeoecol 54:317–328. doi:10.1016/0031-0182(86)90131-8

    Article  Google Scholar 

  • Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subantarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322. doi:10.1023/A:1017524101783

    Article  Google Scholar 

  • Little JL, Smol JP (2001) A chironomid-based model for inferring late-summer hypolimnetic oxygen in southeastern Ontario lakes. J Paleolimnol 26:259–270. doi:10.1023/A:1017562703986

    Article  Google Scholar 

  • Livingstone DM, Lotter AF, Walker IR (1999) The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rates. Arct Antarct Alp Res 31:341–352. doi:10.2307/1552583

    Article  Google Scholar 

  • Lotter AF, Walker IR, Brooks SJ, Hofmann W (1999) An intercontinental comparison of chironomid paleotemperature inference models: Europe vs. North America. Quat Sci Rev 18:717–735. doi:10.1016/S0277-3791(98)00044-4

    Article  Google Scholar 

  • Macphail MK (1978) Vegetation and climates in southern Tasmania since the Last Glaciation. Quat Res 11:306–341. doi:10.1016/0033-5894(79)90078-4

    Article  Google Scholar 

  • Martin J (1979) Chromosomes as tools in taxonomy and phylogeny of Chironomidae (Diptera). Entomol Scan Suppl 10:67–74

    Google Scholar 

  • Massaferro J, Brooks SJ (2002) Response of chironomids to Late Quaternary environmental change in Taitao Peninsula, southern Chile. J Quat Sci 17:101–111. doi:10.1002/jqs.671

    Article  Google Scholar 

  • Massaferro J, Brooks SJ, Haberle SG (2005) The dynamics of chironomid assemblages and vegetation during the Late Quaternary at Laguna Facil, Chonos Archipelago, southern Chile. Quat Sci Rev 24:2510–2522. doi:10.1016/j.quascirev.2005.03.010

    Article  Google Scholar 

  • Mees F, Verschuren D, Nijs R, Dumont HJ (1991) Holocene evolution of the crater lake at Malha, Northwest Sudan. J Paleolimnol 5:227–253. doi:10.1007/BF00200347

    Article  Google Scholar 

  • Oliver DR, Roussel ME (1983) The insects and arachnids of Canada, part 11: the genera of larval midges of Canada, Diptera: Chironomidae. Research Branch, Agriculture Canada, Ottawa

    Google Scholar 

  • Paterson CG, Walker KF (1974) Recent history of Tanytarsus barbitarsus Freeman (Diptera: Chironomidae) in the sediments of a shallow saline lake. Aust J Mar Freshw Res 25:315–325. doi:10.1071/MF9740315

    Article  Google Scholar 

  • Quinlan R, Smol JP (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342. doi:10.1023/A:1017546821591

    Article  Google Scholar 

  • Schakau BL (1986) Preliminary study of the development of the subfossil chironomid fauna (Diptera) of Lake Taylor, South Island, New Zealand, during the younger Holocene. Hydrobiologia 143:287–291. doi:10.1007/BF00026672

    Article  Google Scholar 

  • Shiel RJ, Koste W, Tan LW (1989) Tasmania revisited: rotifer communities and habitat heterogeneity. Hydrobiologia 186/187:239–245. doi:10.1007/BF00048919

    Article  Google Scholar 

  • ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270:485–502. doi:10.1007/BF00028046

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO version 4.5. Biometris-Plant Research International, Wageningen

    Google Scholar 

  • Timms BV (1985) The structure of macrobenthic communities of Australian lakes. Proc Ecol Soc Aust 14:51–59

    Google Scholar 

  • Turney CSM, Haberle S, Fink D, Kershaw AP, Barbetti M, Barrows MTT et al (2006) Integration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group. J Quat Sci 21:751–761. doi:10.1002/jqs.1073

    Article  Google Scholar 

  • Tyler PA (1992) A lakeland from the dreamtime: the second founder’s lecture. Br Phycol J 27:353–368. doi:10.1080/00071619200650301

    Article  Google Scholar 

  • Verschuren D, Eggermont H (2006) Quaternary paleoecology of aquatic Diptera in tropical and Southern Hemisphere regions, with special reference to the Chironomidae. Quat Sci Rev 25:1926–1947. doi:10.1016/j.quascirev.2006.01.008

    Article  Google Scholar 

  • Walker IR, Smol JP, Engstrom DR, Birks HJB (1991) An assessment of Chironomidae as quantitative indicators of past climatic change. Can J Fish Aquat Sci 48:975–987. doi:10.1139/f91-104

    Google Scholar 

  • Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178. doi:10.1023/A:1007997602935

    Article  Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27:97–117. doi:10.1146/annurev.en.27.010182.000525

    Article  Google Scholar 

  • Wiederholm T (1983) Chironomidae of the holarctic region. Keys and diagnoses. Part 1. Larvae. Entomol Scand Suppl 19:457 pp

  • Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). J Paleolimnol 36:407–429. doi:10.1007/s10933-006-9009-6

    Article  Google Scholar 

  • Woodward CA, Shulmeister J (2007) Chironomid-based reconstructions of summer air temperature from lake deposits in Lyndon Stream, New Zealand spanning the MIS 3/2 transition. Quat Sci Rev 26:142–154. doi:10.1016/j.quascirev.2006.06.004

    Article  Google Scholar 

  • Wright IA, Burgin S (2007) Species richness and distribution of eastern Australian lake chironomids and chaoborids. Freshw Biol 52:2354–2368. doi:10.1111/j.1365-2427.2007.01853.x

    Article  Google Scholar 

  • Wright IA, Cranston PS (2000) Are Australian lakes different? Chironomid and chaoborid exuviae from Lake McKenzie, a coastal temperate dune lake. Int Ver Theor Angew Limnol Verh 27:303–308

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River, New Jersey, 931 pp

Download references

Acknowledgments

We would like to thank Rob Wiltshire, Marian McGowen, and Nigella for their friendship, meals to die for, and logistical support; Greg Jordan and Peter Tyler for data contributions and site selection; the Department of Primary Industries, Water and Environment (DPIWE) for letting us collect samples; Fonya Irvine and Joshua Kurek for field assistance; Ian Walker for statistical advice; John S. Little for funding of visits to the University of California—Davis and the 17th International Quaternary Association Congress; and two anonymous reviewers who provided helpful comments and insights. This project was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to L. C. Cwynar. Map data were provided by TASMAP, © State of Tasmania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. H. Rees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rees, A.B.H., Cwynar, L.C. & Cranston, P.S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J Paleolimnol 40, 1159–1178 (2008). https://doi.org/10.1007/s10933-008-9222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9222-6

Keywords

Navigation