Skip to main content
Log in

Thermal Unfolding Curves of High Concentration Bovine IgG Measured by FTIR Spectroscopy

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The purpose of this research is to study the thermal unfolding of high concentration bovine Immunoglobulin G (IgG) under 26 different experimental conditions by Fourier Transform Infrared spectroscopy with improved purge conditions and software calculations. When bovine IgG (25–200 mg/mL) was thermally denatured between pH 4.0 and 8.0, it was observed that at 25 mg/mL concentration, the protein exhibited maximum thermal stability at pH 6.0 and 7.0 as evident from the apparent Tm values. Increasing the concentration from 25 to 100 mg/mL at those pH values increased the thermal resistance of the protein by 2–3 °C. But, at 200 mg/mL, IgG showed a small decrease in its transition temperature. Presence of 100 mM Trehalose enhanced the Tm values at all conditions and possibly prevented the complete loss of IgG as insoluble aggregates at higher temperatures. Second derivative plots were constructed to explain the conformational changes of IgG during thermal unfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FTIR spectroscopy:

Fourier transform infrared spectroscopy

Immunoglobulin G:

IgG

CD:

Circular dichroism

DSC:

Differential scanning calorimetry

NMR:

Nuclear magnetic resonance

References

  1. Davidson GP, Whyte PB, Daniels E, Franklin K, Nunan H, McCloud PI, Moore AG, Moore DJ (1989) Lancet 2:709–712

    Article  CAS  Google Scholar 

  2. Devi VS, Chidi OO, Coleman D (2009) Spectroscopy 23:265–270

    Google Scholar 

  3. Dominguez E, Perez MD, Calvo M (1997) J Dairy Sci 80:3182–3187

    Article  CAS  Google Scholar 

  4. Dominguez E, Perez MD, Puyol P, Sanchez L, Calvo M (2001) J Dairy Res 68:511–518

    Article  CAS  Google Scholar 

  5. Dong A, Huang P, Caughey WS (1990) Biochemistry 29:3303–3308

    Article  CAS  Google Scholar 

  6. Efron B, Tibshirani RJ (1993) In: Hall C (ed) An introduction to the bootstrap. Chapman and Hall/CRC Press, Boca Raton, pp 1–456

  7. Gapper LW, Copestake DE, Otter DE, Indyk HE (2007) Anal Bioanal Chem 389:93–109

    Article  CAS  Google Scholar 

  8. Gorga JC, Dong A, Manning MC, Woody RW, Caughey WS, Strominger JL (1989) Proc Natl Acad Sci USA 86:2321–2325

    Article  CAS  Google Scholar 

  9. Guo J, Harn N, Robbins A, Dougherty R, Middaugh CR (2006) Biochemistry 45:8686–8696

    Article  CAS  Google Scholar 

  10. Harn N, Allan C, Oliver C, Middaugh CR (2007) J Pharm Sci 96:532–546

    Article  CAS  Google Scholar 

  11. Herron JN, Jiskoot W, Crommelin DJA (eds) (1995) Physical methods to characterize pharmaceutical proteins. Plenum Press, New York, pp 1–380

  12. Ionescu RM, Vlasak J, Price C, Kirchmeier M (2008) J Pharm Sci 97:1414–1426

    Article  CAS  Google Scholar 

  13. Jain NK, Roy I (2009) Protein Sci 18:24–36

    CAS  Google Scholar 

  14. Kaushik JK, Bhat R (2003) J Biol Chem 278:26458–26465

    Article  CAS  Google Scholar 

  15. Korhonen H, Marnila P, Gill HS (2000) Br J Nutr 84(Suppl 1):S135–S146

    CAS  Google Scholar 

  16. Lee JC, Timasheff SN (1981) J Biol Chem 256:7193–7201

    CAS  Google Scholar 

  17. Li SQ, Bomser JA, Zhang QH (2005) J Agric Food Chem 53:663–670

    Article  CAS  Google Scholar 

  18. Matheus S, Friess W, Mahler HC (2006) Pharm Res 23:1350–1363

    Article  CAS  Google Scholar 

  19. Matheus S, Mahler HC, Friess W (2006) Pharm Res 23:1617–1627

    Article  CAS  Google Scholar 

  20. Minton AP (2005) J Pharm Sci 94:1668–1675

    Article  CAS  Google Scholar 

  21. Pelton JT, McLean LR (2000) Anal Biochem 277:167–176

    Article  CAS  Google Scholar 

  22. Rahmelow K, Hubner W (1997) Appl Spectrosc 51:160–170

    Article  CAS  Google Scholar 

  23. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Nat Biotechnol 23:1073–1078

    Article  CAS  Google Scholar 

  24. Rosenberg AS (2006) AAPS J 8:E501–E507

    Article  Google Scholar 

  25. Salnikova MS, Middaugh CR, Rytting JH (2008) Int J Pharm 358:108–113

    Article  CAS  Google Scholar 

  26. Shire SJ, Shahrokh Z, Liu J (2004) J Pharm Sci 93:1390–1402

    Article  CAS  Google Scholar 

  27. Tacket CO, Losonsky G, Link H, Hoang Y, Guesry P, Hilpert H, Levine MM (1988) N Engl J Med 318:1240–1243

    Article  CAS  Google Scholar 

  28. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) Nature 388:539–547

    Article  CAS  Google Scholar 

  29. Tsioulpas A, Lewis MJ, Grandison AS (2007) Int J Dairy Technol 60:96–97

    Article  CAS  Google Scholar 

  30. Venyaminov S, Prendergast FG (1997) Anal Biochem 248:234–245

    Article  CAS  Google Scholar 

  31. Vermeer AW, Norde W (2000) Biophys J 78:394–404

    Article  CAS  Google Scholar 

  32. Vermeer AW, Norde W, van Amerongen A (2000) Biophys J 79:2150–2154

    Article  CAS  Google Scholar 

  33. Wang W, Singh S, Zeng DL, King K, Nema S (2007) J Pharm Sci 96:1–26

    Article  CAS  Google Scholar 

  34. Wartewig S, Neubert RH (2005) Adv Drug Deliv Rev 57:1144–1170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Sathya Devi or Denis R. Coleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathya Devi, V., Coleman, D.R. & Truntzer, J. Thermal Unfolding Curves of High Concentration Bovine IgG Measured by FTIR Spectroscopy. Protein J 30, 395–403 (2011). https://doi.org/10.1007/s10930-011-9344-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9344-y

Keywords

Navigation