Skip to main content
Log in

Purification and Mass Spectrometric Characterization of Sesbania aculeata (Dhaincha) Stem Lectin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A glucose specific lectin (STA) was isolated from Sesbania aculeata stem by using Sephadex G-50 affinity column chromatography. The lectin is a glycoprotein having 29 kDa subunit molecular weight. Two dimensional gel electrophoresis analysis revealed that the lectin existed in two isomeric forms with varied carbohydrate content as analyzed by high performance anion exchange chromatography-pulsed amperometric detector (HPAEC-PAD). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and N-terminal sequence (LDSLSFTYNNFE) analysis of this lectin showed 95% homology with stem lectin SL-I (accession no. AJ585523) from peanut plant. The nucleotide sequence of the lectin (STA) was submitted to the gene bank (accession no. EU263636).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MALDI-TOF/TOF:

Matrix assisted laser desorption ionization time of flight mass spectrometry

PMSF:

Phenylmethanesulfonyl fluoride

HPAEC-PAD:

High performance anion exchange chromatography-pulsed amperometric detector

HA:

Hemagglutination activity

IEF:

Iso-electric focusing

PNGase F:

Peptide N-glycosidase F

TBS:

Tris buffered saline

ELLBA:

Enzyme linked lectin binding assay

References

  1. Goldstein IJ, Poretz RD (1986) Isolation and chemical properties of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins: properties, functions and applications in biology and medicines. Academic Press, Orlando, USA

    Google Scholar 

  2. Sharon N, Lis H (1972) Science 177:949–959

    Article  CAS  Google Scholar 

  3. Van Damme EJM, Peumans WJ, Pusztai A, Bardocz S (1998) Handbook of plant lectins: properties and biomedical applications. Wiley, England

    Google Scholar 

  4. Etzler ME (1985) Ann Rev Plant Physiol 36:209–234

    CAS  Google Scholar 

  5. Pathak M, Singh B, Sharma A, Agrawal P, Pasha SB, Das HR, Das RH (2006) Plant Mol Biol 62:529–545

    Article  CAS  Google Scholar 

  6. Singh R, Das HR (1994) Glycoconj J 11:282–285

    Article  CAS  Google Scholar 

  7. Peumans WJ, Van Damme EJM (1995) Histochem J 27:253–271

    Article  CAS  Google Scholar 

  8. Esteban R, Dopico B, Munoz FJ, Romo S, Labrador E (2002) Physiol Plant 114:619–626

    Article  CAS  Google Scholar 

  9. Spilatro SR, Cochran GR, Walker RE, Cablish KI, Bittner CC (1996) Plant Physiol 110:825–834

    Article  CAS  Google Scholar 

  10. Saxena S, Das H, Das D, Biswas S (2008) Online J Bioinform 9:113–123

    Google Scholar 

  11. Peumans WJ, Van Damme EJM (1995) Plant Physiol 109:347–352

    Article  CAS  Google Scholar 

  12. Helenius A, Trombetta ES, Herbert DN, Simons JF (1997) Trends Cell Biol 7:193–200

    Article  CAS  Google Scholar 

  13. Etzler ME (1986) Distribution and function of plant lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins: properties, functions and applications in biology and medicine. Academic Press, Orlando, USA

    Google Scholar 

  14. Jayaraman V, Das HR (1998) Biochim Biophys Acta 1381:7–11

    CAS  Google Scholar 

  15. Biswas S, Saroha A, Das HR (2009) Biochemistry (Moscow) 74:404–411

    Article  Google Scholar 

  16. Grant G, More LJ, McKenzie NH, Stewart JC, Pusztai A (1983) Br J Nutr 50:207–214

    Article  CAS  Google Scholar 

  17. Pugalenthi M, Vadivel V, Gurumoorthi P, Janardhanan K (2004) Trop Subtrop Agroecosystems 4:107–123

    Google Scholar 

  18. Lowry OH, Rosenbrough NJ, Lewis FA, Randall RJ (1951) J Biol Chem 1936:265–275

    Google Scholar 

  19. White CA, Kennedy JF (1979) Oligosaccharides. In: Chaplin Kennedy (ed) Carbohydrate analysis: a practical approach. IRL Press, Oxford

    Google Scholar 

  20. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  21. Hernandez P, Debray H, Jaekel H, Garfias Y, Jimenez Md MC, Martinez-Cairo S, Zenteno E (2001) Glycoconj J 18:321–329

    Article  CAS  Google Scholar 

  22. Flensburg J, Haid D, Blomberg J, Bielawski J, Ivansson D (2004) J Biochem Biophys Methods 60:319–334

    Article  CAS  Google Scholar 

  23. Towbin H, Staehelin T, Gordon J (1979) Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  Google Scholar 

  24. Das H, Jayaraman V, Bhattacharya I (1999) Biosci Rep 19:219–225

    Article  CAS  Google Scholar 

  25. Townsend RR, Hardy MR, Hindsgaul O, Lee YC (1988) Anal Biochem 174:459–470

    Article  CAS  Google Scholar 

  26. Selvaraj G, Iyer VN (1983) J Bacteriol 156:1292–1300

    CAS  Google Scholar 

  27. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR III (1999) Nat Biotechnol 17:676–682

    Article  CAS  Google Scholar 

  28. Biswas S, Das RH, Sharma GL, Das HR (2008) Curr Microbiol 56:48–54

    Article  CAS  Google Scholar 

  29. Naeem A, Ahmed E, Ashraf MT, Khan RH (2007) Biochemistry (Moscow) 72:44–48

    Article  CAS  Google Scholar 

  30. Wong JH, Ng TB (2005) Arch Biochem Biophys 439:91–98

    Article  CAS  Google Scholar 

  31. Rittidach W, Paijit N, Utarabhand P (2007) Biochim Biophys Acta 1770:106–114

    CAS  Google Scholar 

  32. Escribano J, Rubio A, Alvarez-Ort M, Molina A, Fernndez JA (2000) J Agric Food Chem 48:457–463

    Article  CAS  Google Scholar 

  33. Guzman-Partida AM, Robles-Burgueno MR, Ortega-Nieblas M, Vazquez-Moreno I (2004) Biochimie 86:335–342

    Article  CAS  Google Scholar 

  34. Moreno FJ, Jenkins JA, Mellon FA, Rigby NM, Robertson JA, Wellner N, Clare Mills EN (2004) Biochim Biophys Acta 1698:175–186

    CAS  Google Scholar 

  35. Stoeva S, Franz M, Wacker R, Krauspenhaar R, Guthohrlein E, Mikhailov A, Betzel C, Voelter W (2001) Arch Biochem Biophys 392:23–31

    Article  CAS  Google Scholar 

  36. Claverol S, Burlet-Schiltz O, Gairin JE, Monsarrat B (2003) Proteomics 2:483–493

    CAS  Google Scholar 

  37. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data. Mol Cell Proteomics 4:1419–1440

    Article  CAS  Google Scholar 

  38. Mann K, Farias CMSA, Del Sol FG, Santos CF, Grangeiro TB, Nagano CS, Cavada BS, Calvete JJ (2001) Eur J Biochem 268:4414–4422

    Article  CAS  Google Scholar 

  39. Jung EC, Kim KD, Bae CH, Kim JC, Kim DK, Kim HH (2007) Biochim Biophys Acta 1770:833–838

    CAS  Google Scholar 

  40. Karpunina LV, Melnikova UIu, Konnova SA, Abroskina OM (2001) Mikrobiologiia 70:519–524

    CAS  Google Scholar 

  41. Chen JL, Lin S, Lin LP (2006) World J Microbiol Biotechnol 22:565–570

    Article  CAS  Google Scholar 

  42. Hrabak EM, Urbano MR, Dazzo FB (1981) J Bacteriol 148:697–711

    CAS  Google Scholar 

  43. Suzuki S, Aono T, Lee KB, Suzuki T, Liu CT, Miwa H, Wakao S, Iki T, Oyaizu H (2007) Appl Environ Microbiol 73:6650–6659

    Article  CAS  Google Scholar 

  44. Goethals K, Leyman B, Van Den EG, Van MM, Holsters M (1994) J Bacteriol 176:92–99

    CAS  Google Scholar 

  45. Bhattacharya I, Biswas S, Das RH, Das HR (2004) Ind J Biochem Biophys 41:89–95

    CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from the Department of Biotechnology, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasi R. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Agrawal, P., Saroha, A. et al. Purification and Mass Spectrometric Characterization of Sesbania aculeata (Dhaincha) Stem Lectin. Protein J 28, 391–399 (2009). https://doi.org/10.1007/s10930-009-9206-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9206-z

Keywords

Navigation