Skip to main content

Advertisement

Log in

A cell-level model of pharmacodynamics-mediated drug disposition

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

We aimed to develop a cell-level pharmacodynamics-mediated drug disposition (PDMDD) model to analyze in vivo systems where the PD response to a drug has an appreciable effect on the pharmacokinetics (PK). An existing cellular level model of PD stimulation was combined with the standard target-mediated drug disposition (TMDD) model and the resulting model structure was parametrically identifiable from typical in vivo PK and PD data. The PD model of the cell population was controlled by the production rate k in and elimination rate k out which could be stimulated or inhibited by the number of bound receptors on a single cell. Simulations were performed to assess the impact of single and repeated dosing on the total drug clearance. The clinical utility of the cell-level PDMDD model was demonstrated by fitting published data on the stimulatory effects of filgrastim on absolute neutrophil counts in healthy subjects. We postulated repeated dosing as a means of detecting and quantifying PDMDD as a single dose might not be sufficient to elicit the cellular response capable of altering the receptor pool to visibly affect drug disposition. In the absence of any PD effect, the model reduces down to the standard TMDD model. The applications of this model can be readily extended to include chemotherapy-induced cytopenias affecting clearance of endogenous hematopoietic growth factors, different monoclonal antibodies and immunogenicity effects on PK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56:248–252

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y-MC, Krzyzanski W, Doshi S et al (2010) Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J 12:729–740. doi:10.1208/s12248-010-9234-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roskos LK (2012) The clinical pharmacology of filgrastim and pegfilgrastim. In: Twenty years of G-CSF. Springer, Basel, p 41–60

  4. Quartino AL, Karlsson MO, Lindman H, Friberg LE (2014) Characterization of endogenous G-CSF and the inverse correlation to chemotherapy-induced neutropenia in patients with breast cancer using population modeling. Pharm Res 31:3390–3403. doi:10.1007/s11095-014-1429-9

    Article  CAS  PubMed  Google Scholar 

  5. Farese AM, Cohen MV, Stead RB et al (2012) Pegfilgrastim administered in an abbreviated schedule, significantly improved neutrophil recovery after high-dose radiation-induced myelosuppression in rhesus macaques. Radiat Res 178:403–413. doi:10.1667/RR2900.1

    Article  CAS  PubMed  Google Scholar 

  6. Wang B, Nichol JL, Sullivan JT (2004) Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther 76:628–638. doi:10.1016/j.clpt.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  7. Krzyzanski W, Sutjandra L, Perez-Ruixo JJ et al (2013) Pharmacokinetic and pharmacodynamic modeling of romiplostim in animals. Pharm Res 30:655–669. doi:10.1007/s11095-012-0894-2

    Article  CAS  PubMed  Google Scholar 

  8. Bernstein SH, Jusko WJ, Krzyzanski W et al (2002) Pharmacodynamic modeling of thrombopoietin, platelet, and megakaryocyte dynamics in patients with acute myeloid leukemia undergoing dose intensive chemotherapy. J Clin Pharmacol 42:501–511. doi:10.1177/00912700222011553

    Article  CAS  PubMed  Google Scholar 

  9. Yan X, Lowe PJ, Fink M, Berghout A (2012) Population pharmacokinetic and pharmacodynamic model-based comparability assessment of a recombinant human epoetin alfa and the biosimilar HX575. J Clin Pharmacol. doi:10.1177/0091270011421911/pdf

  10. Doshi S, Krzyzanski W, Yue S et al (2013) Clinical pharmacokinetics and pharmacodynamics of erythropoiesis-stimulating agents. Clin Pharmacokinet 52:1063–1083. doi:10.1007/s40262-013-0098-x

    Article  CAS  PubMed  Google Scholar 

  11. Mould DR, Baumann A, Kuhlmann J et al (2007) Population pharmacokinetics–pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol 64:278–291. doi:10.1111/j.1365-2125.2007.02914.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibiansky L, Frey N (2012) Linking interleukin-6 receptor blockade with tocilizumab and its hematological effects using a modeling approach. J Pharmacokinet Pharmacodyn 39:5–16. doi:10.1007/s10928-011-9227-z

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Ruixo JJ, Ma P, Chow AT (2013) The utility of modeling and simulation approaches to evaluate immunogenicity effect on the therapeutic protein pharmacokinetics. AAPS J 15:172–182. doi:10.1208/s12248-012-9424-8

    Article  PubMed  Google Scholar 

  14. Wang B, Ludden TM, Cheung EN et al (2001) Population pharmacokinetic–pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J Pharmacokinet Pharmacodyn 28:321–342. doi:10.1023/A:1011534529622

    Article  CAS  PubMed  Google Scholar 

  15. Krzyzanski W, Wiczling P, Lowe P et al (2010) Population modeling of filgrastim PK–PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol 50:101S–112S. doi:10.1177/0091270010376966

    Article  CAS  PubMed  Google Scholar 

  16. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22:1589–1596. doi:10.1007/s11095-005-6650-0

    Article  CAS  PubMed  Google Scholar 

  17. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573–591. doi:10.1007/s10928-008-9102-8

    Article  CAS  PubMed  Google Scholar 

  18. Gross AW, Lodish HF (2006) Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 281:2024–2032. doi:10.1074/jbc.M510493200

    Article  CAS  PubMed  Google Scholar 

  19. Sarkar CA, Lauffenburger DA (2003) Cell-level pharmacokinetic model of granulocyte colony-stimulating factor: implications for ligand lifetime and potency in vivo. Mol Pharmacol 63:147–158. doi:10.1124/mol.63.1.147

    Article  CAS  PubMed  Google Scholar 

  20. Krippendorff B-F, Oyarzún DA, Huisinga W (2012) Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling. J Pharmacokinet Pharmacodyn 39:125–139. doi:10.1007/s10928-012-9243-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532

    Article  CAS  PubMed  Google Scholar 

  22. Shankaran H, Resat H, Wiley HS (2007) Cell surface receptors for signal transduction and ligand transport: a design principles study. PLoS Comput Biol 3:e101. doi:10.1371/journal.pcbi.0030101

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478. doi:10.1007/BF01061691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrold JM, Abraham AK (2014) Ubiquity: a framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic model development and deployment. J Pharmacokinet Pharmacodyn 41:151. doi:10.1007/s10928-014-9352-6

    Article  Google Scholar 

  25. Borleffs JC, Bosschaert M, Vrehen HM et al (1998) Effect of escalating doses of recombinant human granulocyte colony-stimulating factor (filgrastim) on circulating neutrophils in healthy subjects. Clin Ther 20:722–736

    Article  CAS  PubMed  Google Scholar 

  26. Friberg LE, Freijs A, Sandström M, Karlsson MO (2000) Semiphysiological model for the time course of leukocytes after varying schedules of 5-fluorouracil in rats. J Pharmacol Exp Ther 295:734–740

    CAS  PubMed  Google Scholar 

  27. Friberg LE, Karlsson MO (2003) Mechanistic models for myelosuppression. Investig N Drugs. doi:10.1023/A:1023573429626

    Google Scholar 

  28. Layton JE, Shimamoto G, Osslund T et al (1999) Interaction of granulocyte colony-stimulating factor (G-CSF) with its receptor. Evidence that Glu19 of G-CSF interacts with Arg288 of the receptor. J Biol Chem 274:17445–17451

    Article  CAS  PubMed  Google Scholar 

  29. Wiczling P, Lowe P, Pigeolet E et al (2009) Population pharmacokinetic modelling of filgrastim in healthy adults following intravenous and subcutaneous administrations. Clin Pharmacokinet 48:817–826. doi:10.2165/11318090-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  30. Kavgaci H, Ozdemir F, Aydin F et al (2002) Endogenous granulocyte colony-stimulating factor (G-CSF) levels in chemotherapy-induced neutropenia and in neutropenia related with primary diseases. J Exp Clin Cancer Res 21:475–479

    CAS  PubMed  Google Scholar 

  31. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    CAS  PubMed  Google Scholar 

  32. McKenzie SB, Williams JL, Landis-Piwowar K (2014) Clinical laboratory hematology. Prentice Hall, Upper Saddle River

    Google Scholar 

  33. Ramon-Lopez A, Nalda-Molina R, Valenzuela B, Perez-Ruixo JJ (2009) Semi-mechanistic model for neutropenia after high dose of chemotherapy in breast cancer patients. Pharm Res 26:1952–1962. doi:10.1007/s11095-009-9910-6

    Article  CAS  PubMed  Google Scholar 

  34. Gibaldi M, Perrier D (1982) Pharmacokinetics. Informa HealthCare, New York

    Google Scholar 

  35. Diekmann O, Gyllenberg M, Metz J (2007) Physiologically structured population models: towards a general mathematical theory. In: Takeuchi Y, Iwasa Y, Sato K (eds) Mathematics for ecology and environmental sciences. Springer, Berlin, pp 5–20

    Chapter  Google Scholar 

  36. Ait-Oudhia S, Vermeulen A, Krzyzanski W (2011) Non-linear mixed effect modeling of the time-variant disposition of erythropoietin in anemic cancer patients. Biopharm Drug Dispos 32:1–15. doi:10.1002/bdd.733

    Article  CAS  PubMed  Google Scholar 

  37. Pastor ML, Laffont CM, Gladieff L et al (2013) Model-based approach to describe G-CSF effects in carboplatin-treated cancer patients. Pharm Res 30:2795–2807. doi:10.1007/s11095-013-1099-z

    Article  CAS  PubMed  Google Scholar 

  38. Yan X, Clemens PL, Puchalski T et al (2015) Target-mediated drug disposition of daratumumab following intravenous infusion in relapsed or refractory multiple myeloma after prior proteasome inhibitors and immunomodulatory drugs: a population pharmacokinetic analysis. Blood 126:4222

    Google Scholar 

  39. Xu XS, Yan X, Puchalski T et al (2015) Understanding the dose regimen for daratumumab in patients with relapsed or refractory multiple myeloma (MM) after prior proteasome inhibitors (PIs) and immunomodulatory drugs (IMiDs): a quantitative pharmacologic perspective. Blood 126:4254

    Article  Google Scholar 

  40. Gibiansky E, Gibiansky L, Carlile DJ et al (2014) Population pharmacokinetics of obinutuzumab (GA101) in chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma and exposure-response in CLL. CPT Pharmacomet Syst Pharmacol 3:1–11. doi:10.1038/psp.2014.42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Harrold.

Ethics declarations

Conflicts of interest

The following authors are or were employees of and own stock in Amgen, Inc.: Juan Jose Perez-Ruixo, Liviawati S. Wu, and John M. Harrold. Wojciech Krzyzanski is a consultant for Amgen and received consultation fees for this work.

Appendices

Appendix 1: Clearance of total drug

Since A tot  = A P  + BV c one can combine Eqs. (2) and (35) to obtain a differential equation

$$\frac{{dA_{tot} }}{dt} = In(t) - \left( {k_{el} + k_{pt} } \right)A_{P} + k_{tp} \cdot A_{T} - k_{int} \cdot B \cdot V_{c} + k_{in} \cdot \xi \cdot b\left( {1 + H_{in} (b)} \right) - k_{out} \cdot \left( {1 + H_{out} (b)} \right)B \cdot V_{c} .$$
(41)

Therefore the elimination rate of the total drug from the body is

$${\text{elimination}}\;{\text{rate}} = k_{el} \cdot A_{P} + k_{int} \cdot B \cdot V_{c} + k_{out} \left( {1 + H_{out} (b)} \right)B \cdot V_{c} .$$
(42)

Dividing (42) by C yields (40).

Appendix 2: Rapid binding approximation

In many instances receptor binding and dissociation are much faster than the remaining processes described by the model. This results in the inability to uniquely identify the binding parameters. To resolve this problem the rapid binding approximation of the full model (2)–(8) can be applied based on the quasi-equilibrium assumption [16]:

$$\frac{C\cdot r}{b} = \frac{{k_{on} }}{{k_{off} }} = K_{D} .$$
(43)

To be able to eliminate the binding parameters k on and k off from the model equations new variables are introduced, the total receptor number/cell (r tot ) and total amount of the drug in the central compartment (A tot ):

$$r_{tot} = r + b\quad {\text{and}}\quad A_{tot} = A_{P} + \xi \cdot b \cdot N.$$
(44)

Then the model equations become:

$$\frac{{dA_{tot} }}{dt} = In(t) - \left( {k_{el} + k_{pt} } \right)C \cdot V_{c} + k_{tp} \cdot A_{T} - k_{int} \cdot \xi \cdot b \cdot N + \xi \cdot b \cdot \frac{dN}{dt},$$
(45)
$$\frac{{dA_{T} }}{dt} = k_{pt} \cdot C \cdot V_{c} - k_{tp} \cdot A_{T} ,$$
(46)
$$\frac{{dr_{tot} }}{dt} = k_{syn} - k_{deg } \cdot r_{tot} + \left( {k_{deg } - k_{int} } \right) \cdot b,$$
(47)

where the derivative dN/dt is defined by (7),

$$b = \frac{{r_{tot} \cdot C}}{{K_{D} + C}},$$
(48)

and

$$C \,=\, \frac{1}{2}\left( {C_{tot} - R_{tot} - K_{D} + \sqrt {\left( {C_{tot} - R_{tot} - K_{D} } \right) + 4 \cdot K_{D} \cdot C_{tot} } } \right).$$
(49)

The total drug and total receptor concentrations in the central compartment are defined as follows

$$C_{tot} = \frac{{A_{tot} }}{{V_{c} }} = C + B \quad {\text{and}}\quad R_{tot} = \frac{{r_{tot} \cdot \xi \cdot N}}{{V_{c} }} = R + B.$$
(50)

Given that In(t) describes the input rate to the A tot compartments (including bolus doses), the initial conditions for (45)–(47) are

$$A_{tot} (0) = 0,\quad A_{T} (0) = 0,\quad r_{tot} (0) = \frac{{k_{syn} }}{{k_{deg } }},\quad N(0) = \frac{{k_{in} }}{{k_{out} }}.$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzyzanski, W., Harrold, J.M., Wu, L.S. et al. A cell-level model of pharmacodynamics-mediated drug disposition. J Pharmacokinet Pharmacodyn 43, 513–527 (2016). https://doi.org/10.1007/s10928-016-9491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-016-9491-z

Keywords

Navigation