Skip to main content

Advertisement

Log in

Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39. doi:10.1038/nrd2399

    Article  CAS  PubMed  Google Scholar 

  2. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10(5):345–352. doi:10.1038/nri2747

    Article  CAS  PubMed  Google Scholar 

  3. Skrlec K, Strukelj B, Berlec A (2015) Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 33(7):408–418. doi:10.1016/j.tibtech.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  4. Wurch T, Pierre A, Depil S (2012) Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol 30(11):575–582. doi:10.1016/j.tibtech.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  5. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604. doi:10.1074/jbc.M009483200

    Article  CAS  PubMed  Google Scholar 

  6. Oganesyan V, Gao C, Shirinian L, Wu H, Dall’Acqua WF (2008) Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta Crystallogr D Biol Crystallogr 64(Pt 6):700–704. doi:10.1107/S0907444908007877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dall’Acqua WF, Kiener PA, Wu H (2006) Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281(33):23514–23524. doi:10.1074/jbc.M604292200

    Article  PubMed  Google Scholar 

  8. Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A, Poulsen K, Casas MG, Dorywalska M, Farias S, Pios A, Lui V, Dushin R, Zhou D, Navaratnam T, Tran TT, Sutton J, Lindquist KC, Han B, Liu SH, Shelton DL, Pons J, Rajpal A (2015) Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotechnol 33(7):694–696. doi:10.1038/nbt.3274

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal P, Bertozzi CR (2015) Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjugate chem 26(2):176–192. doi:10.1021/bc5004982

    Article  CAS  Google Scholar 

  10. Zhou Q, Kim J (2015) Advances in the development of site-specific antibody-drug conjugation. Anticancer Agents Med Chem 15(7):828–836

    Article  CAS  PubMed  Google Scholar 

  11. Alewine C, Hassan R, Pastan I (2015) Advances in anticancer immunotoxin therapy. Oncologist 20(2):176–185. doi:10.1634/theoncologist.2014-0358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. List T, Neri D (2013) Immunocytokines: a review of molecules in clinical development for cancer therapy. Clinical Pharmacol: Adv Appl 5:29–45. doi:10.2147/CPAA.S49231

    Google Scholar 

  13. Kraeber-Bodere F, Bodet-Milin C, Rousseau C, Eugene T, Pallardy A, Frampas E, Carlier T, Ferrer L, Gaschet J, Davodeau F, Gestin JF, Faivre-Chauvet A, Barbet J, Cherel M (2014) Radioimmunoconjugates for the treatment of cancer. Semin Oncol 41(5):613–622. doi:10.1053/j.seminoncol.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  14. DiGiammarino E, Ghayur T, Liu J (2012) Design and generation of DVD-Ig molecules for dual-specific targeting. Methods Mol Biol 899:145–156. doi:10.1007/978-1-61779-921-1_9

    Article  CAS  PubMed  Google Scholar 

  15. Zanin M, Keck ZY, Rainey GJ, Lam CY, Boon AC, Rubrum A, Darnell D, Wong SS, Griffin Y, Xia J, Webster RG, Webby R, Johnson S, Foung S (2015) An anti-H5N1 influenza virus FcDART antibody is a highly efficacious therapeutic agent and prophylactic against H5N1 influenza virus infection. J Virol 89(8):4549–4561. doi:10.1128/JVI.00078-15

    Article  CAS  PubMed  Google Scholar 

  16. Buie LW, Pecoraro JJ, Horvat TZ, Daley RJ (2015) Blinatumomab: a first-in-class bispecific T-cell engager for precursor B-cell acute lymphoblastic leukemia. Ann Pharmacother. doi:10.1177/1060028015588555

    PubMed  Google Scholar 

  17. Caravella J, Lugovskoy A (2010) Design of next-generation protein therapeutics. Curr Opin Chem Biol 14(4):520–528. doi:10.1016/j.cbpa.2010.06.175

    Article  CAS  PubMed  Google Scholar 

  18. Lehmann A (2008) Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery. Expert Opinion on Biol Therapy 8(8):1187–1199. doi:10.1517/14712598.8.8.1187

    Article  CAS  Google Scholar 

  19. Kariolis MS, Kapur S, Cochran JR (2013) Beyond antibodies: using biological principles to guide the development of next-generation protein therapeutics. Curr Opin Biotechnol 24(6):1072–1077. doi:10.1016/j.copbio.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  20. Lindzen M, Carvalho S, Starr A, Ben-Chetrit N, Pradeep CR, Kostler WJ, Rabinkov A, Lavi S, Bacus SS, Yarden Y (2012) A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis. Oncogene 31(30):3505–3515. doi:10.1038/onc.2011.518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Al-Halafi AM (2014) Vascular endothelial growth factor trap-eye and trap technology: aflibercept from bench to bedside. Oman J Ophthalmol 7(3):112–115. doi:10.4103/0974-620X.142591

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gabay C (2003) IL-1 trap. Regeneron/novartis. Curr Opin Investig Drugs 4(5):593–597

    CAS  PubMed  Google Scholar 

  23. Foss FM (2000) DAB(389)IL-2 (denileukin diftitox, ONTAK): a new fusion protein technology. Clin Lymphoma 1(Suppl 1):S27–31

    Article  PubMed  Google Scholar 

  24. Low SC, Nunes SL, Bitonti AJ, Dumont JA (2005) Oral and pulmonary delivery of FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis. Hum Reprod 20(7):1805–1813. doi:10.1093/humrep/deh896

    Article  CAS  PubMed  Google Scholar 

  25. Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, Langer R, Farokhzad OC (2013) Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 5(213):213ra167. doi:10.1126/scitranslmed.3007049

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wu F, Bhansali SG, Law WC, Bergey EJ, Prasad PN, Morris ME (2012) Fluorescence imaging of the lymph node uptake of proteins in mice after subcutaneous injection: molecular weight dependence. Pharm Res 29(7):1843–1853. doi:10.1007/s11095-012-0708-6

    Article  CAS  PubMed  Google Scholar 

  27. Deng R, Meng YG, Hoyte K, Lutman J, Lu Y, Iyer S, DeForge LE, Theil FP, Fielder PJ, Prabhu S (2012) Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice. mAbs 4(1):101–109. doi:10.4161/mabs.4.1.18543

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zheng Y, Tesar DB, Benincosa L, Birnbock H, Boswell CA, Bumbaca D, Cowan KJ, Danilenko DM, Daugherty AL, Fielder PJ, Grimm HP, Joshi A, Justies N, Kolaitis G, Lewin-Koh N, Li J, McVay S, O’Mahony J, Otteneder M, Pantze M, Putnam WS, Qiu ZJ, Ruppel J, Singer T, Stauch O, Theil FP, Visich J, Yang J, Ying Y, Khawli LA, Richter WF (2012) Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration. mAbs 4(2):243–255. doi:10.4161/mabs.4.2.19387

    Article  PubMed Central  PubMed  Google Scholar 

  29. Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7(2):167–169

    Article  CAS  PubMed  Google Scholar 

  30. Fathallah AM, Turner MR, Mager DE, Balu-Iyer SV (2015) Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration. Biopharm Drug Dispos 36(2):115–125. doi:10.1002/bdd.1925

    Article  CAS  PubMed  Google Scholar 

  31. Kim H, Robinson SB, Csaky KG (2009) FcRn receptor-mediated pharmacokinetics of therapeutic IgG in the eye. Mol Vis 15:2803–2812

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Shah DK, Betts AM (2013) Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. mAbs 5(2):297–305. doi:10.4161/mabs.23684

    Article  PubMed Central  PubMed  Google Scholar 

  33. Rippe B, Haraldsson B (1987) Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol Scand 131(3):411–428. doi:10.1111/j.1748-1716.1987.tb08257.x

    Article  CAS  PubMed  Google Scholar 

  34. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjugate Chem 21(12):2153–2163. doi:10.1021/bc100261d

    Article  CAS  Google Scholar 

  35. Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34(5):687–709. doi:10.1007/s10928-007-9065-1

    Article  CAS  PubMed  Google Scholar 

  36. Chen N, Wang W, Fauty S, Fang Y, Hamuro L, Hussain A, Prueksaritanont T (2014) The effect of the neonatal Fc receptor on human IgG biodistribution in mice. mAbs 6(2):502–508. doi:10.4161/mabs.27765

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cooper PR, Ciambrone GJ, Kliwinski CM, Maze E, Johnson L, Li Q, Feng Y, Hornby PJ (2013) Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res 1534:13–21. doi:10.1016/j.brainres.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  38. Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X (2010) Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci 99(2):1028–1045. doi:10.1002/jps.21855

    CAS  PubMed  Google Scholar 

  39. Schmidt MM, Wittrup KD (2009) A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 8(10):2861–2871. doi:10.1158/1535-7163.MCT-09-0195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Weinstein JN, van Osdol W (1992) Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res 52(9 Suppl):2747s–2751s

    CAS  PubMed  Google Scholar 

  41. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3(84):84ra44. doi:10.1126/scitranslmed.3002230

    Article  PubMed  Google Scholar 

  42. Hamilton S, Odili J, Wilson GD, Kupsch JM (2002) Reducing renal accumulation of single-chain Fv against melanoma-associated proteoglycan by coadministration of L-lysine. Melanoma Res 12(4):373–379

    Article  CAS  PubMed  Google Scholar 

  43. Lin K, Tibbitts J (2012) Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 29(9):2354–2366. doi:10.1007/s11095-012-0800-y

    Article  CAS  PubMed  Google Scholar 

  44. Shah DK, Haddish-Berhane N, Betts A (2012) Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn 39(6):643–659. doi:10.1007/s10928-012-9276-y

    Article  PubMed  Google Scholar 

  45. Singh AP, Shin YG, Shah DK (2015) Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res. doi:10.1007/s11095-015-1626-1

    Google Scholar 

  46. Chudasama VL, Zutshi A, Singh P, Abraham AK, Mager DE, Harrold JM (2015) Simulations of site-specific target-mediated pharmacokinetic models for guiding the development of bispecific antibodies. J Pharmacokinet Pharmacodyn 42(1):1–18. doi:10.1007/s10928-014-9401-1

    Article  CAS  PubMed  Google Scholar 

  47. Norden AG, Lapsley M, Lee PJ, Pusey CD, Scheinman SJ, Tam FW, Thakker RV, Unwin RJ, Wrong O (2001) Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int 60(5):1885–1892. doi:10.1046/j.1523-1755.2001.00016.x

    Article  CAS  PubMed  Google Scholar 

  48. Newkirk MM, Novick J, Stevenson MM, Fournier MJ, Apostolakos P (1996) Differential clearance of glycoforms of IgG in normal and autoimmune-prone mice. Clin Exp Immunol 106(2):259–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Deng R, Jin F, Prabhu S, Iyer S (2012) Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development? Expert Opin on Drug Metab Toxicol 8(2):141–160. doi:10.1517/17425255.2012.643868

    Article  CAS  Google Scholar 

  50. Huang L, Biolsi S, Bales KR, Kuchibhotla U (2006) Impact of variable domain glycosylation on antibody clearance: an LC/MS characterization. Anal Biochem 349(2):197–207. doi:10.1016/j.ab.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  51. Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB (2009) Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 182(12):7663–7671. doi:10.4049/jimmunol.0804182

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, Yamaguchi T (2010) Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol 184(4):1968–1976. doi:10.4049/jimmunol.0903296

    Article  CAS  PubMed  Google Scholar 

  53. Czajkowsky DM, Hu J, Shao Z, Pleass RJ (2012) Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 4(10):1015–1028. doi:10.1002/emmm.201201379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sand KM, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT (2014) Unraveling the Interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol 5:682. doi:10.3389/fimmu.2014.00682

    PubMed Central  PubMed  Google Scholar 

  55. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532

    Article  CAS  PubMed  Google Scholar 

  56. Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451. doi:10.1007/s10928-012-9260-6

    Article  PubMed Central  PubMed  Google Scholar 

  57. Vugmeyster Y, Szklut P, Wensel D, Ross J, Xu X, Awwad M, Gill D, Tchistiakov L, Warner G (2011) Complex pharmacokinetics of a humanized antibody against human amyloid beta peptide, anti-abeta Ab2, in nonclinical species. Pharm Res 28(7):1696–1706. doi:10.1007/s11095-011-0405-x

    Article  CAS  PubMed  Google Scholar 

  58. Bumbaca D, Wong A, Drake E, Reyes AE 2nd, Lin BC, Stephan JP, Desnoyers L, Shen BQ, Dennis MS (2011) Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. mAbs 3(4):376–386

    Article  PubMed Central  PubMed  Google Scholar 

  59. Hotzel I, Theil FP, Bernstein LJ, Prabhu S, Deng R, Quintana L, Lutman J, Sibia R, Chan P, Bumbaca D, Fielder P, Carter PJ, Kelley RF (2012) A strategy for risk mitigation of antibodies with fast clearance. mAbs 4(6):753–760. doi:10.4161/mabs.22189

    Article  PubMed Central  PubMed  Google Scholar 

  60. Rehlaender BN, Cho MJ (1998) Antibodies as carrier proteins. Pharm Res 15(11):1652–1656

    Article  CAS  PubMed  Google Scholar 

  61. Ducourau E, Mulleman D, Paintaud G, Miow Lin DC, Lauferon F, Ternant D, Watier H, Goupille P (2011) Antibodies toward infliximab are associated with low infliximab concentration at treatment initiation and poor infliximab maintenance in rheumatic diseases. Arthritis Res Therapy 13(3):R105. doi:10.1186/ar3386

    Article  CAS  Google Scholar 

  62. Brinks V, Weinbuch D, Baker M, Dean Y, Stas P, Kostense S, Rup B, Jiskoot W (2013) Preclinical models used for immunogenicity prediction of therapeutic proteins. Pharm Res 30(7):1719–1728. doi:10.1007/s11095-013-1062-z

    Article  CAS  PubMed  Google Scholar 

  63. Bryson CJ, Jones TD, Baker MP (2010) Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs: Clin Immunother Biopharm Gene Therapy 24(1):1–8. doi:10.2165/11318560-000000000-00000

    Article  CAS  Google Scholar 

  64. Han TH, Zhao B (2014) Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab Dispos: Biol Fate Chem 42(11):1914–1920. doi:10.1124/dmd.114.058586

    Article  Google Scholar 

  65. Mack F, Ritchie M, Sapra P (2014) The next generation of antibody drug conjugates. Semin Oncol 41(5):637–652. doi:10.1053/j.seminoncol.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  66. Hager T, Spahr C, Xu J, Salimi-Moosavi H, Hall M (2013) Differential enzyme-linked immunosorbent assay and ligand-binding mass spectrometry for analysis of biotransformation of protein therapeutics: application to various FGF21 modalities. Anal Chem 85(5):2731–2738. doi:10.1021/ac303203y

    Article  CAS  PubMed  Google Scholar 

  67. Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M (2013) Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics. Bioanalysis 5(2):201–226. doi:10.4155/bio.12.299

    Article  CAS  PubMed  Google Scholar 

  68. Ezan E, Becher F, Fenaille F (2014) Assessment of the metabolism of therapeutic proteins and antibodies. Expert Opin On Drug Metab Toxicol 10(8):1079–1091. doi:10.1517/17425255.2014.925878

    Article  CAS  Google Scholar 

  69. Wang SJ, Wu ST, Gokemeijer J, Fura A, Krishna M, Morin P, Chen G, Price K, Wang-Iverson D, Olah T, Weiner R, Tymiak A, Jemal M (2012) Attribution of the discrepancy between ELISA and LC-MS/MS assay results of a PEGylated scaffold protein in post-dose monkey plasma samples due to the presence of anti-drug antibodies. Anal Bioanal Chem 402(3):1229–1239. doi:10.1007/s00216-011-5527-9

    Article  CAS  PubMed  Google Scholar 

  70. Abuqayyas L, Balthasar JP (2012) Pharmacokinetic mAb-mAb interaction: anti-VEGF mAb decreases the distribution of anti-CEA mAb into colorectal tumor xenografts. AAPS J 14(3):445–455. doi:10.1208/s12248-012-9357-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000. doi:10.1038/nbt.3040

    Article  CAS  PubMed  Google Scholar 

  72. Jusko WJ (2013) Moving from basic toward systems pharmacodynamic models. J Pharm Sci 102(9):2930–2940. doi:10.1002/jps.23590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9(4):325–338. doi:10.1038/nrd3003

    Article  CAS  PubMed  Google Scholar 

  74. Yan M (2011) Therapeutic promise and challenges of targeting DLL4/NOTCH1. Vasc Cell 3:17. doi:10.1186/2045-824X-3-17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Goodyear M (2006) Learning from the TGN1412 trial. BMJ 332(7543):677–678. doi:10.1136/bmj.38797.635012.47

    Article  PubMed Central  PubMed  Google Scholar 

  76. Santostefano MJ, Kirchner J, Vissinga C, Fort M, Lear S, Pan WJ, Prince PJ, Hensley KM, Tran D, Rock D, Vargas HM, Narayanan P, Jawando R, Rees W, Reindel JF, Reynhardt K, Everds N (2012) Off-target platelet activation in macaques unique to a therapeutic monoclonal antibody. Toxicol Pathol 40(6):899–917. doi:10.1177/0192623312444029

    Article  CAS  PubMed  Google Scholar 

  77. Holland MC, Wurthner JU, Morley PJ, Birchler MA, Lambert J, Albayaty M, Serone AP, Wilson R, Chen Y, Forrest RM, Cordy JC, Lipson DA, Bayliffe AI (2013) Autoantibodies to variable heavy (VH) chain Ig sequences in humans impact the safety and clinical pharmacology of a VH domain antibody antagonist of TNF-alpha receptor 1. J Clin Immunol 33(7):1192–1203. doi:10.1007/s10875-013-9915-0

    Article  CAS  PubMed  Google Scholar 

  78. Lon HK, Liu D, Jusko WJ (2012) Pharmacokinetic/pharmacodynamic modeling in inflammation. Crit Rev Biomed Eng 40(4):295–312

    Article  PubMed Central  PubMed  Google Scholar 

  79. Tabrizi M, Bornstein GG, Suria H (2010) Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J 12(1):33–43. doi:10.1208/s12248-009-9157-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66(15):7630–7638. doi:10.1158/0008-5472.CAN-05-4010

    Article  CAS  PubMed  Google Scholar 

  81. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86. doi:10.1007/s10928-011-9232-2

    Article  CAS  PubMed  Google Scholar 

  82. Kern SE (2012) Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res 72(23):6097–6101. doi:10.1158/0008-5472.CAN-12-3232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA, Abdiche Y, Stone DM, Paralkar VM (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Therap 333(1):2–13. doi:10.1124/jpet.109.164129

    Article  CAS  Google Scholar 

  84. Luu KT, Bergqvist S, Chen E, Hu-Lowe D, Kraynov E (2012) A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Therap 341(3):702–708. doi:10.1124/jpet.112.191999

    Article  CAS  Google Scholar 

  85. Bender BC, Schaedeli-Stark F, Koch R, Joshi A, Chu YW, Rugo H, Krop IE, Girish S, Friberg LE, Gupta M (2012) A population pharmacokinetic/pharmacodynamic model of thrombocytopenia characterizing the effect of trastuzumab emtansine (T-DM1) on platelet counts in patients with HER2-positive metastatic breast cancer. Cancer Chemother Pharmacol 70(4):591–601. doi:10.1007/s00280-012-1934-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Protein Therapeutics at the University at Buffalo, and NIH Grant GM114179 to DKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval K. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, D.K. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics. J Pharmacokinet Pharmacodyn 42, 553–571 (2015). https://doi.org/10.1007/s10928-015-9447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9447-8

Keywords

Navigation