Skip to main content

Advertisement

Log in

Semi-mechanistic kidney model incorporating physiologically-relevant fluid reabsorption and transporter-mediated renal reabsorption: pharmacokinetics of γ-hydroxybutyric acid and l-lactate in rats

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This study developed a semi-mechanistic kidney model incorporating physiologically-relevant fluid reabsorption and transporter-mediated active reabsorption. The model was applied to data for the drug of abuse γ-hydroxybutyric acid (GHB), which exhibits monocarboxylate transporter (MCT1/SMCT1)-mediated renal reabsorption. The kidney model consists of various nephron segments—proximal tubules, Loop-of-Henle, distal tubules, and collecting ducts—where the segmental fluid flow rates, volumes, and sequential reabsorption were incorporated as functions of the glomerular filtration rate. The active renal reabsorption was modeled as vectorial transport across proximal tubule cells. In addition, the model included physiological blood, liver, and remainder compartments. The population pharmacokinetic modeling was performed using ADAPT5 for GHB blood concentration-time data and cumulative amount excreted unchanged into urine data (200–1000 mg/kg IV bolus doses) from rats [Felmlee et al (PMID: 20461486)]. Simulations assessed the effects of inhibition (R = [I]/KI = 0–100) of renal reabsorption on systemic exposure (AUC) and renal clearance of GHB. Visual predictive checks and other model diagnostic plots indicated that the model reasonably captured GHB concentrations. Simulations demonstrated that the inhibition of renal reabsorption significantly increased GHB renal clearance and decreased AUC. Model validation was performed using a separate dataset. Furthermore, our model successfully evaluated the pharmacokinetics of l-lactate using data obtained from Morse et al (PMID: 24854892). In conclusion, we developed a semi-mechanistic kidney model that can be used to evaluate transporter-mediated active renal reabsorption of drugs by the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khurana I (2014) Excretory system. In: Textbook of human physiology for dental students, 2nd edn. Elsevier Health Sciences APAC, pp 280–281

  2. Lote CJ (2000) Summary of the principal reabsorptive and secretory processes. In: Principles of renal physiology, 4th edn. Kluwer Academic Publishers, pp 161–162

  3. Lash LH (2007) Principles and methods of renal toxicology. In: Hayes AW (ed) Principles and methods of toxicology, 5th edn. Taylor & Francis, London, pp 1513–1514

    Google Scholar 

  4. Kusuhara H, Sekine T, Anzai N, Endou H (2014) Drug transport in the kidney. In: Morris ME, Wang B (eds) You G. Drug transporters, Molecular characterization and role in drug disposition. Wiley, pp 303–316

    Google Scholar 

  5. Morrissey KM, Stocker SL, Wittwer MB, Xu L, Giacomini KM (2013) Renal transporters in drug development. Annu Rev Pharmacol Toxicol 53:503–529. doi:10.1146/annurev-pharmtox-011112-140317

    Article  CAS  PubMed  Google Scholar 

  6. Launay-Vacher V, Izzedine H, Karie S, Hulot JS, Baumelou A, Deray G (2006) Renal tubular drug transporters. Nephron Physiol 103(3):p97–p106. doi:10.1159/000092212

    Article  CAS  PubMed  Google Scholar 

  7. Morris ME, Hu K, Wang Q (2005) Renal clearance of gamma-hydroxybutyric acid in rats: increasing renal elimination as a detoxification strategy. J Pharmacol Exp Ther 313(3):1194–1202. doi:10.1124/jpet.105.083253

    Article  CAS  PubMed  Google Scholar 

  8. Iwanaga T, Kobayashi D, Hirayama M, Maeda T, Tamai I (2005) Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Dispos 33(12):1791–1795. doi:10.1124/dmd.105.006056

    CAS  PubMed  Google Scholar 

  9. Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE (2007) Impact of genetic knockout of pept2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos 35(7):1209–1216. doi:10.1124/dmd.107.015263

    Article  PubMed  Google Scholar 

  10. Andersen ME, Clewell HJ 3rd, Tan YM, Butenhoff JL, Olsen GW (2006) Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys–probing the determinants of long plasma half-lives. Toxicology 227(1–2):156–164. doi:10.1016/j.tox.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  11. Chang SC, Noker PE, Gorman GS, Gibson SJ, Hart JA, Ehresman DJ, Butenhoff JL (2012) Comparative pharmacokinetics of perfluorooctanesulfonate (pfos) in rats, mice, and monkeys. Reprod Toxicol 33(4):428–440. doi:10.1016/j.reprotox.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  12. Hendel J, Nyfors A (1984) Nonlinear renal elimination kinetics of methotrexate due to saturation of renal tubular reabsorption. Eur J Clin Pharmacol 26(1):121–124

    Article  CAS  PubMed  Google Scholar 

  13. Arvidsson A, Borga O, Alvan G (1979) Renal excretion of cephapirin and cephaloridine: evidence for saturable tubular reabsorption. Clin Pharmacol Ther 25(6):870–876

    CAS  PubMed  Google Scholar 

  14. Fujino H, Saito T, Ogawa S, Kojima J (2005) Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of hmg-coa reductase. J Pharm Pharmacol 57(10):1305–1311. doi:10.1211/jpp.57.10.0009

    Article  CAS  PubMed  Google Scholar 

  15. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130(6):1793–1806. doi:10.1053/j.gastro.2006.02.034

    Article  CAS  PubMed  Google Scholar 

  16. Su Y, Zhang X, Sinko PJ (2004) Human organic anion-transporting polypeptide oatp-a (slc21a3) acts in concert with p-glycoprotein and multidrug resistance protein 2 in the vectorial transport of saquinavir in hep g2 cells. Mol Pharm 1(1):49–56

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe K, Jinriki T, Sato J (2004) Effects of progesterone and norethisterone on cephalexin uptake in the human intestinal cell line caco-2. Biol Pharm Bull 27(4):559–563

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J (2006) Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos 34(4):547–555. doi:10.1124/dmd.105.006791

    Article  CAS  PubMed  Google Scholar 

  19. Wesson LG Jr (1954) A theoretical analysis of urea excretion by the mammalian kidney. Am J Physiol 179(2):364–371

    CAS  PubMed  Google Scholar 

  20. Tucker GT (1981) Measurement of the renal clearance of drugs. Br J Clin Pharmacol 12(6):761–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hall S, Rowland M (1984) Relationship between renal clearance, protein binding and urine flow for digitoxin, a compound of low clearance in the isolated perfused rat kidney. J Pharmacol Exp Ther 228(1):174–179

    CAS  PubMed  Google Scholar 

  22. Levy G (1980) Effect of plasma protein binding on renal clearance of drugs. J Pharm Sci 69(4):482–483

    Article  CAS  PubMed  Google Scholar 

  23. Sand TE, Jacobsen S (1981) Effect of urine ph and flow on renal clearance of methotrexate. Eur J Clin Pharmacol 19(6):453–456

    Article  CAS  PubMed  Google Scholar 

  24. Tang-Liu DD, Tozer TN, Riegelman S (1983) Dependence of renal clearance on urine flow: a mathematical model and its application. J Pharm Sci 72(2):154–158

    Article  CAS  PubMed  Google Scholar 

  25. Romano G, Favret G, Damato R, Bartoli E (1998) Proximal reabsorption with changing tubular fluid inflow in rat nephrons. Exp Physiol 83(1):35–48

    Article  CAS  PubMed  Google Scholar 

  26. Lang F (1987) Osmotic diuresis. Ren Physiol 10(3–4):160–173

    CAS  PubMed  Google Scholar 

  27. Liu FY, Cogan MG (1984) Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am J Physiol 247(5 Pt 2):F816–F821

    CAS  PubMed  Google Scholar 

  28. Liu FY, Cogan MG (1986) Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia. J Clin Invest 78(6):1547–1557. doi:10.1172/JCI112747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Maddox DA, Gennari FJ (1987) The early proximal tubule: a high-capacity delivery-responsive reabsorptive site. Am J Physiol 252(4 Pt 2):F573–F584

    CAS  PubMed  Google Scholar 

  30. Layton AT (2011) A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Am J Physiol Renal Physiol 300(2):F356–F371. doi:10.1152/ajprenal.00203.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Layton AT (2011) A mathematical model of the urine concentrating mechanism in the rat renal medulla. Ii. Functional implications of three-dimensional architecture. Am J Physiol Renal Physiol 300(2):F372–F384. doi:10.1152/ajprenal.00204.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Weinstein AM (2015) A mathematical model of the rat nephron: glucose transport. Am J Physiol Renal Physiol 308(10):F1098–F1118. doi:10.1152/ajprenal.00505.2014

    Article  CAS  PubMed  Google Scholar 

  33. Weinstein AM (2015) A mathematical model of rat proximal tubule and loop of henle. Am J Physiol Renal Physiol 308(10):F1076–F1097. doi:10.1152/ajprenal.00504.2014

    Article  CAS  PubMed  Google Scholar 

  34. Weinstein AM (2001) A mathematical model of rat cortical collecting duct: determinants of the transtubular potassium gradient. Am J Physiol Renal Physiol 280(6):F1072–F1092

    CAS  PubMed  Google Scholar 

  35. Jusko WJ, Levy G (1970) Pharmacokinetic evidence for saturable renal tubular reabsorption of riboflavin. J Pharm Sci 59(6):765–772

    Article  CAS  PubMed  Google Scholar 

  36. Blanchard J, Tozer TN, Rowland M (1997) Pharmacokinetic perspectives on megadoses of ascorbic acid. Am J Clin Nutr 66(5):1165–1171

    CAS  PubMed  Google Scholar 

  37. Yamaguchi K, Kato M, Suzuki M, Asanuma K, Aso Y, Ikeda S, Ishigai M (2011) Pharmacokinetic and pharmacodynamic modeling of the effect of an sodium-glucose cotransporter inhibitor, phlorizin, on renal glucose transport in rats. Drug Metab Dispos 39(10):1801–1807. doi:10.1124/dmd.111.040048

    Article  CAS  PubMed  Google Scholar 

  38. Lu Y, Griffen SC, Boulton DW, Leil TA (2014) Use of systems pharmacology modeling to elucidate the operating characteristics of sglt1 and sglt2 in renal glucose reabsorption in humans. Front Pharmacol 5:274. doi:10.3389/fphar.2014.00274

    Article  PubMed Central  PubMed  Google Scholar 

  39. Demin O Jr, Yakovleva T, Kolobkov D, Demin O (2014) Analysis of the efficacy of sglt2 inhibitors using semi-mechanistic model. Front Pharmacol 5:218. doi:10.3389/fphar.2014.00218

    Article  PubMed Central  PubMed  Google Scholar 

  40. Felmlee MA, Dave RA, Morris ME (2013) Mechanistic models describing active renal reabsorption and secretion: a simulation-based study. AAPS J 15(1):278–287. doi:10.1208/s12248-012-9437-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Levy G (1965) Salicylurate formation demonstration of Michaelis-Menten kinetics in man. J Pharm Sci 54:496

    Article  CAS  PubMed  Google Scholar 

  42. Nelson E, Hanano M, Levy G (1966) Comparative pharmacokinetics of salicylate elimination in man and rats. J Pharmacol Exp Ther 153(1):159–166

    CAS  PubMed  Google Scholar 

  43. Levy G, Weintraub L, Matsuzawa T, Oles SR (1966) Absorption, metabolism and excretion of salicylic phenolic glucuronide in rats. J Pharm Sci 55(11):1319–1320

    Article  CAS  PubMed  Google Scholar 

  44. Levy G, Tsuchiya T (1972) Salicylate accumulation kinetics in man. N Engl J Med 287(9):430–432. doi:10.1056/NEJM197208312870903

    Article  CAS  PubMed  Google Scholar 

  45. Levy G (1965) Effect of probenecid on blood levels and urinary recovery of ampicillin. Am J Med Sci 250:174–176

    Article  CAS  PubMed  Google Scholar 

  46. Levy G, Jusko WJ (1966) Apparent renal tubular secretion of riboflavin in man. J Pharm Sci 55(11):1322

    Article  CAS  PubMed  Google Scholar 

  47. Jusko WJ, Levy G (1967) Effect of probenecid on riboflavin absorption and excretion in man. J Pharm Sci 56(9):1145–1149

    Article  CAS  PubMed  Google Scholar 

  48. Jusko WJ, Levy G, Yaffe SJ, Gorodischer R (1970) Effect of probenecid on renal clearance of riboflavin in man. J Pharm Sci 59(4):473–477

    Article  CAS  PubMed  Google Scholar 

  49. Levy G, Koysooko R (1976) Renal clearance of theophylline in man. J Clin Pharmacol 16(7):329–332

    Article  CAS  PubMed  Google Scholar 

  50. Lowenthal DT, Oie S, Van Stone JC, Briggs WA, Levy G (1976) Pharmacokinetics of acetaminophen elimination by anephric patients. J Pharmacol Exp Ther 196(3):570–578

    CAS  PubMed  Google Scholar 

  51. Lin JH, Levy G (1983) Renal clearance of inorganic sulfate in rats: effect of acetaminophen-induced depletion of endogenous sulfate. J Pharm Sci 72(3):213–217

    Article  CAS  PubMed  Google Scholar 

  52. Morris ME, Levy G (1984) Renal clearance and serum protein binding of acetaminophen and its major conjugates in humans. J Pharm Sci 73(8):1038–1041

    Article  CAS  PubMed  Google Scholar 

  53. Oie S, Levy G (1975) Relationship between renal function and elimination kinetics of pindolol in man. Eur J Clin Pharmacol 9(2–3):115–116

    Article  CAS  PubMed  Google Scholar 

  54. Morris ME, Levy G (1983) Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clin Pharmacol Ther 33(4):529–536

    Article  CAS  PubMed  Google Scholar 

  55. Galinsky RE, Slattery JT, Levy G (1979) Effect of sodium sulfate on acetaminophen elimination by rats. J Pharm Sci 68(6):803–805

    Article  CAS  PubMed  Google Scholar 

  56. Levy G, Calesnick B, Wase A (1964) Relationship between hg-203 excretion rate and diuretic response following hg-203 mercaptomerin sodium administration. J Nucl Med 5:302–303

    CAS  PubMed  Google Scholar 

  57. Cummings AJ, Martin BK, Renton R (1966) The elimination of salicylic acid in man: serum concentrations and urinary excretion rates. Br J Pharmacol Chemother 26(2):461–467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Levy G (1980) Clinical pharmacokinetics of salicylates: a re-assessment. Br J Clin Pharmacol 10(Suppl 2):285S–290S

    Article  PubMed Central  PubMed  Google Scholar 

  59. Oie S, Lowenthal DT, Briggs WA, Levy G (1975) Effect of hemodialysis on kinetics of acetaminophen elimination by anephric patients. Clin Pharmacol Ther 18(06):680–686

    CAS  PubMed  Google Scholar 

  60. Levy G, Procknal J (1976) Letter: determination of salicylate and its metabolites in urine. Clin Chem 22(3):395

    CAS  PubMed  Google Scholar 

  61. Levy G, Leonards JR (1971) Urine pH and salicylate therapy. JAMA 217(1):81

    Article  CAS  PubMed  Google Scholar 

  62. Levy G (1977) Pharmacokinetics in renal disease. Am J Med 62(4):461–465

    Article  CAS  PubMed  Google Scholar 

  63. Yacobi A, Levy G (1977) Intraindividual relationships between serum protein binding of drugs in normal human subjects, patients with impaired renal function, and rats. J Pharm Sci 66(9):1285–1288

    Article  CAS  PubMed  Google Scholar 

  64. Jusko WJ, Levy G (1967) Absorption, metabolism, and excretion of riboflavin-5’-phosphate in man. J Pharm Sci 56(1):58–62

    Article  CAS  PubMed  Google Scholar 

  65. Jusko WJ, Levy G (1969) Plasma protein binding of riboflavin and riboflavin-5’-phosphate in man. J Pharm Sci 58(1):58–62

    Article  CAS  PubMed  Google Scholar 

  66. Jusko WJ, Rennick BR, Levy G (1970) Renal exretion of riboflavin in the dog. Am J Physiol 218(4):1046–1053

    CAS  PubMed  Google Scholar 

  67. Jusko WJ, Khanna N, Levy G, Stern L, Yaffe SJ (1970) Riboflavin absorption and excretion in the neonate. Pediatrics 45(6):945–949

    CAS  PubMed  Google Scholar 

  68. Maitre M (1997) The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 51(3):337–361

    Article  CAS  PubMed  Google Scholar 

  69. Mamelak M, Scharf MB, Woods M (1986) Treatment of narcolepsy with gamma-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep 9(1 Pt 2):285–289

    CAS  PubMed  Google Scholar 

  70. Gallimberti L, Spella MR, Soncini CA, Gessa GL (2000) Gamma-hydroxybutyric acid in the treatment of alcohol and heroin dependence. Alcohol 20(3):257–262

    Article  CAS  PubMed  Google Scholar 

  71. Wong CG, Gibson KM, Snead OC 3rd (2004) From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci 25(1):29–34

    Article  CAS  PubMed  Google Scholar 

  72. Schwartz RH, Milteer R, LeBeau MA (2000) Drug-facilitated sexual assault (‘date rape’). South Med J 93(6):558–561

    Article  CAS  PubMed  Google Scholar 

  73. Lettieri JT, Fung HL (1979) Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat. J Pharmacol Exp Ther 208(1):7–11

    CAS  PubMed  Google Scholar 

  74. Palatini P, Tedeschi L, Frison G, Padrini R, Zordan R, Orlando R, Gallimberti L, Gessa GL, Ferrara SD (1993) Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers. Eur J Clin Pharmacol 45(4):353–356

    Article  CAS  PubMed  Google Scholar 

  75. Scharf MB, Lai AA, Branigan B, Stover R, Berkowitz DB (1998) Pharmacokinetics of gammahydroxybutyrate (ghb) in narcoleptic patients. Sleep 21(5):507–514

    CAS  PubMed  Google Scholar 

  76. Arena C, Fung HL (1980) Absorption of sodium gamma-hydroxybutyrate and its prodrug gamma-butyrolactone: relationship between in vitro transport and in vivo absorption. J Pharm Sci 69(3):356–358

    Article  CAS  PubMed  Google Scholar 

  77. Sporer KA, Chin RL, Dyer JE, Lamb R (2003) Gamma-hydroxybutyrate serum levels and clinical syndrome after severe overdose. Ann Emerg Med 42(1):3–8. doi:10.1067/mem.2003.253

    Article  PubMed  Google Scholar 

  78. Cui D, Morris ME (2009) The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (smct) 1 (slc5a8): characterization of smct-mediated uptake and inhibition. Drug Metab Dispos 37(7):1404–1410. doi:10.1124/dmd.109.027169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Wang Q, Lu Y, Morris ME (2007) Monocarboxylate transporter (mct) mediates the transport of gamma-hydroxybutyrate in human kidney hk-2 cells. Pharm Res 24(6):1067–1078. doi:10.1007/s11095-006-9228-6

    Article  CAS  PubMed  Google Scholar 

  80. Wang Q, Wang X, Morris ME (2008) Effects of l-lactate and d-mannitol on gamma-hydroxybutyrate toxicokinetics and toxicodynamics in rats. Drug Metab Dispos 36(11):2244–2251. doi:10.1124/dmd.108.022996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Morse BL, Vijay N, Morris ME (2014) Mechanistic modeling of monocarboxylate transporter-mediated toxicokinetic/toxicodynamic interactions between gamma-hydroxybutyrate and l-lactate. AAPS J 16(4):756–770. doi:10.1208/s12248-014-9593-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Vijay N, Morse BL, Morris ME (2015) A novel monocarboxylate transporter inhibitor as a potential treatment strategy for gamma-hydroxybutyric acid overdose. Pharm Res 32(6):1894–1906. doi:10.1007/s11095-014-1583-0

    Article  CAS  PubMed  Google Scholar 

  83. Morse BL, Morris ME (2013) Effects of monocarboxylate transporter inhibition on the oral toxicokinetics/toxicodynamics of gamma-hydroxybutyrate and gamma-butyrolactone. J Pharmacol Exp Ther 345(1):102–110. doi:10.1124/jpet.112.202796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Morris ME, Morse BL, Baciewicz GJ, Tessena MM, Acquisto NM, Hutchinson DJ, Dicenzo R (2011) Monocarboxylate transporter inhibition with osmotic diuresis increases gamma-hydroxybutyrate renal elimination in humans: a proof-of-concept study. J Clin Toxicol 1(2):1000105. doi:10.4172/2161-0495.1000105

    Article  PubMed Central  PubMed  Google Scholar 

  85. Felmlee MA, Wang Q, Cui D, Roiko SA, Morris ME (2010) Mechanistic toxicokinetic model for gamma-hydroxybutyric acid: inhibition of active renal reabsorption as a potential therapeutic strategy. AAPS J 12(3):407–416. doi:10.1208/s12248-010-9197-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Wang Q, Darling IM, Morris ME (2006) Transport of gamma-hydroxybutyrate in rat kidney membrane vesicles: role of monocarboxylate transporters. J Pharmacol Exp Ther 318(2):751–761. doi:10.1124/jpet.106.105965

    Article  CAS  PubMed  Google Scholar 

  87. Yanase H, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T (2008) Cellular expression of a sodium-dependent monocarboxylate transporter (slc5a8) and the mct family in the mouse kidney. Histochem Cell Biol 130(5):957–966. doi:10.1007/s00418-008-0490-z

    Article  CAS  PubMed  Google Scholar 

  88. Woodhall PB, Tisher CC (1973) Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J Clin Invest 52(12):3095–3108. doi:10.1172/JCI107509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Morse BL, Felmlee MA, Morris ME (2012) Gamma-hydroxybutyrate blood/plasma partitioning: effect of physiologic ph on transport by monocarboxylate transporters. Drug Metab Dispos 40(1):64–69. doi:10.1124/dmd.111.041285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. D’Argenio DZ, Schumitzky A, Wang X (2009) Adapt 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software, 4th edn. Biomedical Simulations Resource, Los Angeles, CA

    Google Scholar 

  91. Lyon RC, Johnston SM, Panopoulos A, Alzeer S, McGarvie G, Ellis EM (2009) Enzymes involved in the metabolism of gamma-hydroxybutyrate in sh-sy5y cells: identification of an iron-dependent alcohol dehydrogenase adhfe1. Chem Biol Interact 178(1–3):283–287. doi:10.1016/j.cbi.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  92. Edlund GL, Halestrap AP (1988) The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Biochem J 249(1):117–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, Prasad PD (2008) Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J 10(1):193–199. doi:10.1208/s12248-008-9022-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Wang Q, Morris ME (2007) The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Drug Metab Dispos 35(8):1393–1399. doi:10.1124/dmd.107.014852

    Article  CAS  PubMed  Google Scholar 

  95. Felmlee MA, Krzyzanski W, Morse BL, Morris ME (2011) Use of a local sensitivity analysis to inform study design based on a mechanistic toxicokinetic model for gamma-hydroxybutyric acid. AAPS J 13(2):240–254. doi:10.1208/s12248-011-9264-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Halestrap AP (2012) The monocarboxylate transporter family–structure and functional characterization. IUBMB Life 64(1):1–9. doi:10.1002/iub.573

    Article  CAS  PubMed  Google Scholar 

  97. Meno-Tetang GM, Li H, Mis S, Pyszczynski N, Heining P, Lowe P, Jusko WJ (2006) Physiologically based pharmacokinetic modeling of fty720 (2-amino-2[2-(-4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) in rats after oral and intravenous doses. Drug Metab Dispos 34(9):1480–1487. doi:10.1124/dmd.105.009001

    Article  CAS  PubMed  Google Scholar 

  98. Peters SA (2012) Appendices. In: Physiologically-based pharmacokinetic (pbpk) modeling and simulations: principles, methods, and applications in the pharmaceutical industry. Wiley, p 407

  99. Niederalt C, Wendl T, Kuepfer L, Claassen K, Loosen R, Willmann S, Lippert J, Schultze-Mosgau M, Winkler J, Burghaus R, Brautigam M, Pietsch H, Lengsfeld P (2012) Development of a physiologically based computational kidney model to describe the renal excretion of hydrophilic agents in rats. Front Physiol 3:494. doi:10.3389/fphys.2012.00494

    PubMed Central  PubMed  Google Scholar 

  100. Jobin J, Bonjour JP (1985) Measurement of glomerular filtration rate in conscious unrestrained rats with inulin infused by implanted osmotic pumps. Am J Physiol 248(5 Pt 2):F734–F738

    CAS  PubMed  Google Scholar 

  101. Wang X, Wang Q, Morris ME (2008) Pharmacokinetic interaction between the flavonoid luteolin and gamma-hydroxybutyrate in rats: potential involvement of monocarboxylate transporters. AAPS J 10(1):47–55. doi:10.1208/s12248-007-9001-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health National Institute on Drug Abuse [Grant R01DA023223]. We thank Robert S. Jones (University at Buffalo) for his suggestions and contributions to the kidney model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn E. Morris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, R.A., Morris, M.E. Semi-mechanistic kidney model incorporating physiologically-relevant fluid reabsorption and transporter-mediated renal reabsorption: pharmacokinetics of γ-hydroxybutyric acid and l-lactate in rats. J Pharmacokinet Pharmacodyn 42, 497–513 (2015). https://doi.org/10.1007/s10928-015-9441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9441-1

Keywords

Navigation