Skip to main content

Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM)

  • Chapter
  • First Online:
Transporters in Drug Development

Abstract

The impact of transporters in modulating the disposition of drugs in the liver and their passage across the gut wall has received much more attention than their role in renal excretion, despite the fact that 25–30 % of drugs are cleared predominantly by renal clearance and renal transporters contribute significantly to this process. Thus there is a need to improve the ability to predict changes in renal clearance arising from genetic variability, the impact of disease and interactions related to renal transporters. Such changes may also influence the accumulation of xenobiotics within the kidney cell leading to nephrotoxicity. Attempts to develop mechanistic, physiologically based models of renal drug elimination have been limited. This chapter outlines the features and application of a new model (Mech KiM) that links drug characteristics to knowledge of renal physiology in predicting the contributions of glomerular filtration, active and passive secretion, active and passive reabsorption and metabolism to renal elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLPD :

Passive diffusion clearance

CYP450:

Cytochrome P450

GFR:

Glomerular filtration rate

ISEF-T:

Inter-system extrapolation factor for transporters

IVIVE:

In vitro–in vivo extrapolation

MATE:

Multidrug and toxin extruder

MDRD:

Modification of diet in renal disease

PBPK:

Physiologically based pharmacokinetics

PTCPGK:

Proximal tubular cells per gram of kidney

QSAR:

Quantitative structure activity relationship

RAF:

Relative activity factor

REF:

Relative expression factor

tDDI:

Transporter-mediated drug–drug interaction

UGT:

Uridine glucuronosyltransferase

References

  • Abel S, Nichols DJ, Brearley CJ, Eve MD (2000) Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol 49:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anzai N, Endou H (2007) Renal drug transporters and nephrotoxicity. AATEX 14:447–452

    Google Scholar 

  • Baldelli S, Merlini S, Perico N, Nicastri A, Cortinovis M, Gotti E, Remuzzi G, Cattaneo D (2007) C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 8:1127–1141

    Article  CAS  PubMed  Google Scholar 

  • Bauer LA, Black DJ, Lill JS, Garrison J, Raisys VA, Hooton TM (2005) Levofloxacin and ciprofloxacin decrease procainamide and N-acetylprocainamide renal clearances. Antimicrob Agents Chemother 49:1649–1651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berndt WO (1989) Potential involvement of renal transport mechanisms in nephrotoxicity. Toxicol Lett 46:77–82

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar V, Xu G, Hamilton BA, Truong DM, Eraly SA, Wu W, Nigam SK (2006) Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3). J Hum Genet 51:575–580

    Article  CAS  PubMed  Google Scholar 

  • Brightman FA, Leahy DE, Searle GE, Thomas S (2006a) Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma. Drug Metab Dispos 34:94–101

    Article  CAS  PubMed  Google Scholar 

  • Brightman FA, Leahy DE, Searle GE, Thomas S (2006b) Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in rat plasma. Drug Metab Dispos 34:84–93

    Article  CAS  PubMed  Google Scholar 

  • Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  CAS  PubMed  Google Scholar 

  • Burnell JM, Kirby WM (1951) Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Invest 30:697–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, Vapurcuyan A, Shahidullah M, Aleksunes LM, Pelis RM (2012) Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab Dispos 40:617–624

    Article  CAS  PubMed  Google Scholar 

  • Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  • Cummings BS, Lasker JM, Lash LH (2000) Expression of glutathione-dependent enzymes and cytochrome P450s in freshly isolated and primary cultures of proximal tubular cells from human kidney. J Pharmacol Exp Ther 293:677–685

    CAS  PubMed  Google Scholar 

  • Cundy KC, Petty BG, Flaherty J, Fisher PE, Polis MA, Wachsman M, Lietman PS, Lalezari JP, Hitchcock MJ, Jaffe HS (1995) Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 39:1247–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Lannoy IA, Koren G, Klein J, Charuk J, Silverman M (1992) Cyclosporin and quinidine inhibition of renal digoxin excretion: evidence for luminal secretion of digoxin. Am J Physiol 263:F613–F622

    PubMed  Google Scholar 

  • Ding R, Tayrouz Y, Riedel KD, Burhenne J, Weiss J, Mikus G, Haefeli WE (2004) Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther 76:73–84

    Article  CAS  PubMed  Google Scholar 

  • Doddareddy MR, Cho YS, Koh HY, Kim DH, Pae AN (2006) In silico renal clearance model using classical volsurf approach. J Chem Inf Model 46:1312–1320

    Article  CAS  PubMed  Google Scholar 

  • Eaton DC, Pooler J (2009) Vander’s renal physiology. McGraw-Hill, New York

    Google Scholar 

  • El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG (2007) Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 320:229–235

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC (1992) Human physiology and mechanisms of disease. W.B. Saunders, Philadelphia

    Google Scholar 

  • Hager WD, Fenster P, Mayersohn M, Perrier D, Graves P, Marcus FI, Goldman S (1979) Digoxin-quinidine interaction pharmacokinetic evaluation. N Engl J Med 300:1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Hall S, Rowland M (1984) Relationship between renal clearance, protein binding and urine flow for digitoxin, a compound of low clearance in the isolated perfused rat kidney. J Pharmacol Exp Ther 228:174–179

    CAS  PubMed  Google Scholar 

  • Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, Smith PC (2012) Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem 84:98–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hill G, Cihlar T, Oo C, Ho ES, Prior K, Wiltshire H, Barrett J, Liu B, Ward P (2002) The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab Dispos 30:13–19

    Article  CAS  PubMed  Google Scholar 

  • Honari J, Blair AD, Cutler RE (1977) Effects of probenecid on furosemide kinetics and natriuresis in man. Clin Pharmacol Ther 22:395–401

    CAS  PubMed  Google Scholar 

  • Howe JL, Back DJ, Colbert J (1992) Extrahepatic metabolism of zidovudine. Br J Clin Pharmacol 33:190–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inotsume N, Nishimura M, Nakano M, Fujiyama S, Sato T (1990) The inhibitory effect of probenecid on renal excretion of famotidine in young, healthy volunteers. J Clin Pharmacol 30:50–56

    Article  CAS  PubMed  Google Scholar 

  • Jalava KM, Partanen J, Neuvonen PJ (1997) Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 19:609–613

    Article  CAS  PubMed  Google Scholar 

  • Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol 5:211–223

    Article  CAS  PubMed  Google Scholar 

  • Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y (2002) Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact 19:41–48

    Article  CAS  PubMed  Google Scholar 

  • Kaloyanides GJ (1991) Metabolic interactions between drugs and renal tubulointerstitial cells: role in nephrotoxicity. Kidney Int 39:531–540

    Article  CAS  PubMed  Google Scholar 

  • Karyekar CS, Eddington ND, Briglia A, Gubbins PO, Dowling TC (2004) Renal interaction between itraconazole and cimetidine. J Clin Pharmacol 44:919–927

    Article  CAS  PubMed  Google Scholar 

  • Katayama K, Ohtani H, Kawabe T, Mizuno H, Endoh M, Kakemi M, Koizumi T (1990) Kinetic studies on drug disposition in rabbits. I. Renal excretion of iodopyracet and sulfamethizole. J Pharmacobiodyn 13:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, Delahunty T, Bushman LR, Fletcher CV (2008) The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther 83:265–272

    Article  CAS  PubMed  Google Scholar 

  • Knauf H, Mutschler E (1992) Diuretika: Prinzipien der klinischen Anwendung. Urban and Schwarzenberg, München

    Google Scholar 

  • Ko H, Cathcart KS, Griffith DL, Peters GR, Adams WJ (1989) Pharmacokinetics of intravenously administered cefmetazole and cefoxitin and effects of probenecid on cefmetazole elimination. Antimicrob Agents Chemother 33:356–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kojima S, Shida M, Tanaka K, Takano H, Yokoyama H, Kuramochi M (2001) Renal macrostructure and cortical circulation in hypertension assessed by dynamic computed tomography. Am J Hypertens 14:516–523

    Article  CAS  PubMed  Google Scholar 

  • Komiya I (1986) Urine flow dependence of renal clearance and interrelation of renal reabsorption and physicochemical properties of drugs. Drug Metab Dispos 14:239–245

    CAS  PubMed  Google Scholar 

  • Komiya I (1987) Urine flow-dependence and interspecies variation of the renal reabsorption of sulfanilamide. J Pharmacobiodyn 10:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kosoglou T, Rocci ML Jr, Vlasses PH (1988) Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin Pharmacol Ther 44:467–477

    Article  CAS  PubMed  Google Scholar 

  • Kremer JM, Hamilton RA (1995) The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. J Rheumatol 22:2072–2077

    CAS  PubMed  Google Scholar 

  • Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, Inoue K, Yuasa H, Sugiyama Y (2011) Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 89:837–844

    Article  CAS  PubMed  Google Scholar 

  • Lash LH, Putt DA, Cai H (2008) Drug metabolism enzyme expression and activity in primary cultures of human proximal tubular cells. Toxicology 244:56–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laskin OL, de Miranda P, King DH, Page DA, Longstreth JA, Rocco L, Lietman PS (1982) Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother 21:804–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavé T, Chapman K, Goldsmith P, Rowland M (2009) Human clearance prediction: shifting the paradigm. Expert Opin Drug Metab Toxicol 5:1039–1048

    Article  PubMed  Google Scholar 

  • Ma L, Sun J, Peng Y, Zhang R, Shao F, Hu X, Zhu J, Wang X, Cheng X, Zhu Y, Wan P, Feng D, Wu H, Wang G (2012) Glucuronidation of edaravone by human liver and kidney microsomes: biphasic kinetics and identification of UGT1A9 as the major UDP-glucuronosyltransferase isoform. Drug Metab Dispos 40:734–741

    Article  CAS  PubMed  Google Scholar 

  • Mahmood I (1998) Interspecies scaling of renally secreted drugs. Life Sci 63:2365–2371

    Article  CAS  PubMed  Google Scholar 

  • Mahmood I (2009) Role of fixed coefficients and exponents in the prediction of human drug clearance: how accurate are the predictions from one or two species? J Pharm Sci 98:2472–2493

    Article  CAS  PubMed  Google Scholar 

  • Manga NDJ, Rowe PH, Cromin MTD (2003) A hierarchical QSAR model for urinary excretion of drugs in humans as a predictive tool for biotransformation. QSAR Comb Sci 22:263–273

    Article  CAS  Google Scholar 

  • Martin DE, Shen J, Griener J, Raasch R, Patterson JH, Cascio W (1996) Effects of ofloxacin on the pharmacokinetics and pharmacodynamics of procainamide. J Clin Pharmacol 36:85–91

    Article  CAS  PubMed  Google Scholar 

  • Mayer JM, Hall SD, Rowland M (1988) Relationship between lipophilicity and tubular reabsorption for a series of 5-alkyl-5-ethylbarbituric acids in the isolated perfused rat kidney preparation. J Pharm Sci 77:359–364

    Article  CAS  PubMed  Google Scholar 

  • Milne MD, Scribner BH, Crawford MA (1958) Non-ionic diffusion and the excretion of weak acids and bases. Am J Med 24:709–729

    Article  CAS  PubMed  Google Scholar 

  • Milne AM, Burchell B, Coughtrie MW (2011) A novel method for the immunoquantification of UDP-glucuronosyltransferases in human tissue. Drug Metab Dispos 39:2258–2263

    Article  CAS  PubMed  Google Scholar 

  • Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    CAS  PubMed  Google Scholar 

  • Muller F, Konig J, Glaeser H, Schmidt I, Zolk O, Fromm MF, Maas R (2011) Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother 55:3091–3098

    Article  PubMed Central  PubMed  Google Scholar 

  • Nozaki Y, Kusuhara H, Kondo T, Hasegawa M, Shiroyanagi Y, Nakazawa H, Okano T, Sugiyama Y (2007) Characterization of the uptake of organic anion transporter (OAT) 1 and OAT3 substrates by human kidney slices. J Pharmacol Exp Ther 321:362–369

    Article  CAS  PubMed  Google Scholar 

  • Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara K, Terada T, Motohashi H, Asaka J, Aoki M, Katsura T, Kamba T, Ogawa O, Inui K (2008) Analysis of regulatory polymorphisms in organic ion transporter genes (SLC22A) in the kidney. J Hum Genet 53:607–614

    Article  CAS  PubMed  Google Scholar 

  • Paine SW, Ménochet K, Denton R, McGinnity DF, Riley RJ (2011) Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption. Drug Metab Dispos 39:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Pedersen KE, Dorph-Pedersen A, Hvidt S, Klitgaard NA, Pedersen KK (1982) The long-term effect of verapamil on plasma digoxin concentration and renal digoxin clearance in healthy subjects. Eur J Clin Pharmacol 22:123–127

    Article  CAS  PubMed  Google Scholar 

  • Pitts RF (1974) Physiology of the kidney and body fluids. Year Book Medical Publishers, Chicago

    Google Scholar 

  • Proctor NJ, Tucker GT, Rostami-Hodjegan A (2004) Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica 34:151–178

    Article  CAS  PubMed  Google Scholar 

  • Proctor WR, Bourdet DL, Thakker DR (2008) Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos 36:1650–1658

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Johnson DW, Vesey DA, Pollock CA, Chen X (2007) Isolation, propagation and characterization of primary tubule cell culture from human kidney. Nephrology (Carlton) 12:155–159

    Article  Google Scholar 

  • Ring BJ, Chien JY, Adkison KK, Jones HM, Rowland M, Jones RD, Yates JW, Ku MS, Gibson CR, He H, Vuppugalla R, Marathe P, Fischer V, Dutta S, Sinha VK, Bjornsson T, Lave T, Poulin P (2011) PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative assessement of prediction methods of human clearance. J Pharm Sci 100: 4090–4110

    Google Scholar 

  • Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95:1238–1257

    Article  CAS  PubMed  Google Scholar 

  • Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94:1259–1276

    Article  CAS  PubMed  Google Scholar 

  • Russel FG, Wouterse AC, Hekman P, Grutters GJ, van Ginneken CA (1987a) Quantitative urine collection in renal clearance studies in the dog. J Pharmacol Methods 17:125–136

    Article  CAS  PubMed  Google Scholar 

  • Russel FG, Wouterse AC, van Ginneken CA (1987b) Physiologically based pharmacokinetic model for the renal clearance of phenolsulfonphthalein and the interaction with probenecid and salicyluric acid in the dog. J Pharmacokinet Biopharm 15:349–368

    Article  CAS  PubMed  Google Scholar 

  • Russel FG, Wouterse AC, van Ginneken CA (1987c) Physiologically based pharmacokinetic model for the renal clearance of salicyluric acid and the interaction with phenolsulfonphthalein in the dog. Drug Metab Dispos 15:695–701

    CAS  PubMed  Google Scholar 

  • Sakurai Y, Motohashi H, Ueo H, Masuda S, Saito H, Okuda M, Mori N, Matsuura M, Doi T, Fukatsu A, Ogawa O, Inui K (2004) Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res 21:61–67

    Article  CAS  PubMed  Google Scholar 

  • Shiga T, Hashiguchi M, Urae A, Kasanuki H, Rikihisa T (2000) Effect of cimetidine and probenecid on pilsicainide renal clearance in humans. Clin Pharmacol Ther 67:222–228

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Horie T, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27:425–446

    Article  CAS  PubMed  Google Scholar 

  • Smith DE, Pavlova A, Berger UV, Hediger MA, Yang T, Huang YG, Schnermann JB (1998) Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm Res 15:1244–1249

    Article  CAS  PubMed  Google Scholar 

  • Somogyi A, McLean A, Heinzow B (1983) Cimetidine-procainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur J Clin Pharmacol 25:339–345

    Article  CAS  PubMed  Google Scholar 

  • Somogyi A, Stockley C, Keal J, Rolan P, Bochner F (1987) Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 23:545–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somogyi AA, Bochner F, Sallustio BC (1992) Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin Pharmacol Ther 51:379–387

    Article  CAS  PubMed  Google Scholar 

  • Spruill WJ, Wade WE, Cobb HH III (2007) Estimating glomerular filtration rate with a modification of diet in renal disease equation: implications for pharmacy. Am J Health Syst Pharm 64:652–660

    Article  PubMed  Google Scholar 

  • Tachibana T, Kitamura S, Kato M, Mitsui T, Shirasaka Y, Yamashita S, Sugiyama Y (2010) Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm Res 27:442–446

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Hussain A, Leal M, Mayersohn M, Fluhler E (2007) Interspecies prediction of human drug clearance based on scaling data from one or two animal species. Drug Metab Dispos 35:1886–1893

    Article  CAS  PubMed  Google Scholar 

  • Tang-Liu DD, Tozer TN, Riegelman S (1983) Dependence of renal clearance on urine flow: a mathematical model and its application. J Pharm Sci 72:154–158

    Article  CAS  PubMed  Google Scholar 

  • Trifillis AL (1999) Isolation, culture and characterization of human renal proximal tubule and collecting duct cells. Exp Nephrol 7:353–359

    Article  CAS  PubMed  Google Scholar 

  • Tsuruoka S, Ioka T, Wakaumi M, Sakamoto K, Ookami H, Fujimura A (2006) Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2. Clin Pharmacol Ther 79:389–396

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK (2008) Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 294:F867–F873

    Article  CAS  PubMed  Google Scholar 

  • Varma MV, Feng B, Obach RS, Troutman MD, Chupka J, Miller HR, El-Kattan A (2009) Physicochemical determinants of human renal clearance. J Med Chem 52:4844–4852

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y (2010) Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38:215–222

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kusuhara H, Debori Y, Maeda K, Kondo T, Nakayama H, Horita S, Ogilvie BW, Parkinson A, Hu Z, Sugiyama Y (2011) Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug–drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos 39:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG, Mathieson PW, Monnens LA, van den Heuvel LP, Levtchenko EN (2010) Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 339:449–457

    Article  PubMed Central  PubMed  Google Scholar 

  • Yasui-Furukori N, Uno T, Sugawara K, Tateishi T (2005) Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther 77:17–23

    Article  CAS  PubMed  Google Scholar 

  • Yee SW, Chen L, Giacomini KM (2010) Pharmacogenomics of membrane transporters: past, present and future. Pharmacogenomics 11:475–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Neuhoff .

Editor information

Editors and Affiliations

Appendix

Appendix

IVIVE for renal transporters using rhTransporter cell systems such as CHO-OAT1, HEK293-OAT3, etc.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neuhoff, S. et al. (2013). Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM). In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_7

Download citation

Publish with us

Policies and ethics