Skip to main content

Advertisement

Log in

Introduction to the analysis of PET data in oncology

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Several reviews on specific topics related to positron emission tomography (PET) ranging in complexity from introductory to highly technical have already been published. This introduction to the analysis of PET data was written as a simple guide of the different phases of analysis of a given PET dataset, from acquisition to preprocessing, to the final data analysis. Although sometimes issues specific to PET in neuroimaging will be mentioned for comparison, most of the examples and applications provided will refer to oncology. Due to the limitations of space we couldn’t address each issue comprehensively but, rather, we provided a general overview of each topic together with the references that the interested reader should consult. We will assume a familiarity with the basic principles of PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cherry S, Dahlbom M (2004) PET: physics, instrumentation and scanners. In: Phelps ME (ed) PET: molecular imaging and its biological applications. Springer, New York, pp 1–124

    Google Scholar 

  2. Bailey DL, Townsend DW, Valk PE, Maisey MN (2005) Positron emission tomography, 1st edn. Springer, London

    Book  Google Scholar 

  3. van Dalen JA, Visser EP, Vogel WV, Corstens FH, Oyen WJ (2007) Impact of Ge-68/Ga-68-based versus CT-based attenuation correction on PET. Med Phys 34(3):889–897

    Article  PubMed  CAS  Google Scholar 

  4. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13(4):601–609. doi:10.1109/42.363108

    Article  PubMed  CAS  Google Scholar 

  5. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16(2):145–158. doi:10.1109/42.563660

    Article  PubMed  CAS  Google Scholar 

  6. Qi J, Leahy RM (2006) Iterative reconstruction techniques in emission computed tomography. Phys Med Biol 51(15):R541–R578. doi:10.1088/0031-9155/51/15/R01

    Article  PubMed  Google Scholar 

  7. Fessler JA, Rogers WL (1996) Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs. IEEE Trans Image Process 5(9):1346–1358. doi:10.1109/83.535846

    Article  PubMed  CAS  Google Scholar 

  8. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 45(9):1519–1527

    PubMed  Google Scholar 

  9. Bailey DL, Meikle SR (1994) A convolution–subtraction scatter correction method for 3D PET. Phys Med Biol 39(3):411–424

    Article  PubMed  CAS  Google Scholar 

  10. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T (1996) Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 41(12):2757–2774

    Article  PubMed  CAS  Google Scholar 

  11. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF (2012) A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 57(21):R119–R159. doi:10.1088/0031-9155/57/21/R119

    Article  PubMed  Google Scholar 

  12. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48(6):932–945. doi:10.2967/jnumed.106.035774

    Article  PubMed  Google Scholar 

  13. Soret MRC, Hapdey S, Buvat I (2002) Biases affecting the measurements of tumor-to-background activity ratio in PET. IEEE Trans Nucl Sci 49:2112–2118

    Article  Google Scholar 

  14. Le Pogam A, Hatt M, Descourt P, Boussion N, Tsoumpas C, Turkheimer FE, Prunier-Aesch C, Baulieu JL, Guilloteau D, Visvikis D (2011) Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography. Med Phys 38(9):4920–4923. doi:10.1118/1.3608907

    Article  PubMed  Google Scholar 

  15. Shidahara M, Tsoumpas C, Hammers A, Boussion N, Visvikis D, Suhara T, Kanno I, Turkheimer FE (2009) Functional and structural synergy for resolution recovery and partial volume correction in brain PET. Neuroimage 44(2):340–348. doi:10.1016/j.neuroimage.2008.09.012

    Article  PubMed  Google Scholar 

  16. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, Davatzikos C, Frost JJ (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: mRI-based correction for partial volume effects. J Cereb Blood Flow Metab 12(4):571–583. doi:10.1038/jcbfm.1992.81

    Article  PubMed  CAS  Google Scholar 

  17. Boussion N, Cheze Le Rest C, Hatt M, Visvikis D (2009) Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging. Eur J Nucl Med Mol Imaging 36(7):1064–1075. doi:10.1007/s00259-009-1065-5

    Article  PubMed  CAS  Google Scholar 

  18. Formiconi AR (1993) Least squares algorithm for region-of-interest evaluation in emission tomography. IEEE Trans Med Imaging 12(1):90–100. doi:10.1109/42.222672

    Article  PubMed  CAS  Google Scholar 

  19. Videen TO, Perlmutter JS, Mintun MA, Raichle ME (1988) Regional correction of positron emission tomography data for the effects of cerebral atrophy. J Cereb Blood Flow Metab 8(5):662–670. doi:10.1038/jcbfm.1988.113

    Article  PubMed  CAS  Google Scholar 

  20. Hutton BF, Thomas BA, Erlandson K, Bousse A, Reilhac-Laborde A, Kazantsev D, Pedemonte S, Vunckx K, Arridge SR, Ourselin S (2012) What approach to brain partial volume correction is best for PET/MRI? Nucl Instrum Methods. doi:10.1016/j.nima.2012.07.059

    Google Scholar 

  21. Curiati PK, Tamashiro-Duran JH, Duran FL, Buchpiguel CA, Squarzoni P, Romano DC, Vallada H, Menezes PR, Scazufca M, Busatto GF, Alves TC (2011) Age-related metabolic profiles in cognitively healthy elders: results from a voxel-based [18F]fluorodeoxyglucose-positron-emission tomography study with partial volume effects correction. AJNR Am J Neuroradiol 32(3):560–565. doi:10.3174/ajnr.A2321

    Article  PubMed  CAS  Google Scholar 

  22. Yanase D, Matsunari I, Yajima K, Chen W, Fujikawa A, Nishimura S, Matsuda H, Yamada M (2005) Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. Eur J Nucl Med Mol Imaging 32(7):794–805. doi:10.1007/s00259-005-1767-2

    Article  PubMed  Google Scholar 

  23. Lamare F, Cresson T, Savean J, Cheze Le Rest C, Reader AJ, Visvikis D (2007) Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 52(1):121–140. doi:10.1088/0031-9155/52/1/009

    Article  PubMed  CAS  Google Scholar 

  24. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, Ford E, Sidhu K, Mageras GS, Larson SM, Humm JL (2002) Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 29(3):366–371

    Article  PubMed  CAS  Google Scholar 

  25. Landoni C, Bettinardi V, Guerra L, De Ponti E, Fioroni F, Elisei F, Picchio M, Versari A, Gianolli L, Messa C (2010) 4D Respiratory-gated (RG) FDG-PET/CT in neoplastic patients: results of a multicenter study. J Nucl Med 51(Supplement 2):1171

    Google Scholar 

  26. Rahmim A, Rousset O, Zaidi H (2007) Strategies for motion tracking and correction in PET. PET Clin 2(2):251–266

    Article  Google Scholar 

  27. Kyme AZ, Hutton BF, Hatton RL, Skerrett DW, Barnden LR (2003) Practical aspects of a data-driven motion correction approach for brain SPECT. IEEE Trans Med Imaging 22(6):722–729. doi:10.1109/TMI.2003.814790

    Article  PubMed  Google Scholar 

  28. Mourik JE, Lubberink M, van Velden FH, Lammertsma AA, Boellaard R (2009) Off-line motion correction methods for multi-frame PET data. Eur J Nucl Med Mol Imaging 36(12):2002–2013. doi:10.1007/s00259-009-1193-y

    Article  PubMed  Google Scholar 

  29. Kenny LM, Contractor KB, Hinz R, Stebbing J, Palmieri C, Jiang J, Shousha S, Al-Nahhas A, Coombes RC, Aboagye EO (2010) Reproducibility of [11C]choline-positron emission tomography and effect of trastuzumab. Clin Cancer Res 16(16):4236–4245. doi:10.1158/1078-0432.CCR-10-0468

    Article  PubMed  CAS  Google Scholar 

  30. Nye JA, Esteves F, Votaw JR (2007) Minimizing artifacts resulting from respiratory and cardiac motion by optimization of the transmission scan in cardiac PET/CT. Med Phys 34(6):1901–1906

    Article  PubMed  Google Scholar 

  31. Smith G, Carroll L, Aboagye EO (2012) New frontiers in the design and synthesis of imaging probes for PET oncology: current challenges and future directions. Mol Imaging Biol 14(6):653–666. doi:10.1007/s11307-012-0590-y

    Article  PubMed  Google Scholar 

  32. Tomasi G, Turkheimer F, Aboagye E (2011) Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol. doi:10.1007/s11307-011-0514-2

    Google Scholar 

  33. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S. doi:10.2967/jnumed.108.057307

    Article  PubMed  CAS  Google Scholar 

  34. Hutchings M, Barrington SF (2009) PET/CT for therapy response assessment in lymphoma. J Nucl Med 50(Suppl 1):21S–30S. doi:10.2967/jnumed.108.057190

    Article  PubMed  CAS  Google Scholar 

  35. Hicks RJ (2009) Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl Med 50(Suppl 1):31S–42S. doi:10.2967/jnumed.108.057216

    Article  PubMed  CAS  Google Scholar 

  36. de Geus-Oei LF, Vriens D, van Laarhoven HW, van der Graaf WT, Oyen WJ (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50(Suppl 1):43S–54S. doi:10.2967/jnumed.108.057224

    Article  PubMed  CAS  Google Scholar 

  37. Avril N, Sassen S, Roylance R (2009) Response to therapy in breast cancer. J Nucl Med 50(Suppl 1):55S–63S. doi:10.2967/jnumed.108.057240

    Article  PubMed  CAS  Google Scholar 

  38. Schwarz JK, Grigsby PW, Dehdashti F, Delbeke D (2009) The role of 18F-FDG PET in assessing therapy response in cancer of the cervix and ovaries. J Nucl Med 50(Suppl 1):64S–73S. doi:10.2967/jnumed.108.057257

    Article  PubMed  CAS  Google Scholar 

  39. Schoder H, Fury M, Lee N, Kraus D (2009) PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med 50(Suppl 1):74S–88S. doi:10.2967/jnumed.108.057208

    Article  PubMed  CAS  Google Scholar 

  40. Krause BJ, Herrmann K, Wieder H, zum Buschenfelde CM (2009) 18F-FDG PET and 18F-FDG PET/CT for assessing response to therapy in esophageal cancer. J Nucl Med 50(Suppl 1):89S–96S. doi:10.2967/jnumed.108.057232

    Article  PubMed  CAS  Google Scholar 

  41. Herrmann K, Wieder HA, Buck AK, Schoffel M, Krause BJ, Fend F, Schuster T, Meyer zum Buschenfelde C, Wester HJ, Duyster J, Peschel C, Schwaiger M, Dechow T (2007) Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res 13(12):3552–3558. doi:10.1158/1078-0432.CCR-06-3025

    Article  PubMed  CAS  Google Scholar 

  42. Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH (2010) 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51(6):866–874. doi:10.2967/jnumed.109.069310

    Article  PubMed  Google Scholar 

  43. Contractor KB, Kenny LM, Stebbing J, Rosso L, Ahmad R, Jacob J, Challapalli A, Turkheimer F, Al-Nahhas A, Sharma R, Coombes RC, Aboagye EO (2011) [18F]-3′Deoxy-3′-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res 17(24):7664–7672. doi:10.1158/1078-0432.CCR-11-0783

    Article  PubMed  CAS  Google Scholar 

  44. Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH (2006) Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8(1):36–42. doi:10.1007/s11307-005-0029-9

    Article  PubMed  Google Scholar 

  45. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, Satyamurthy N, Pope W, Lai A, Phelps ME, Cloughesy T (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721. doi:10.1200/JCO.2006.10.5825

    Article  PubMed  CAS  Google Scholar 

  46. Kasper B, Egerer G, Gronkowski M, Haufe S, Lehnert T, Eisenhut M, Mechtersheimer G, Ho AD, Haberkorn U (2007) Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk Lymphoma 48(4):746–753. doi:10.1080/10428190601113568

    Article  PubMed  Google Scholar 

  47. Nanni C, Fantini L, Nicolini S, Fanti S (2010) Non FDG PET. Clin Radiol 65(7):536–548. doi:10.1016/j.crad.2010.03.012

    Article  PubMed  CAS  Google Scholar 

  48. Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50(Suppl 1):11S–20S. doi:10.2967/jnumed.108.057182

    Article  PubMed  CAS  Google Scholar 

  49. Williams SP, Flores-Mercado JE, Baudy AR, Port RE, Bengtsson T (2012) The power of FDG-PET to detect treatment effects is increased by glucose correction using a Michaelis constant. EJNMMI Res 2(1):35. doi:10.1186/2191-219X-2-35

    Article  PubMed  Google Scholar 

  50. Cheebsumon P, Velasquez LM, Hoekstra CJ, Hayes W, Kloet RW, Hoetjes NJ, Smit EF, Hoekstra OS, Lammertsma AA, Boellaard R (2011) Measuring response to therapy using FDG PET: semi-quantitative and full kinetic analysis. Eur J Nucl Med Mol Imaging 38(5):832–842. doi:10.1007/s00259-010-1705-9

    Article  PubMed  CAS  Google Scholar 

  51. Lubberink M, Direcks W, Emmering J, van Tinteren H, Hoekstra OS, van der Hoeven JJ, Molthoff CF, Lammertsma AA (2012) Validity of simplified 3′-deoxy-3′-[(18)F]fluorothymidine uptake measures for monitoring response to chemotherapy in locally advanced breast cancer. Mol Imaging Biol. doi:10.1007/s11307-012-0547-1

    Google Scholar 

  52. Ferl GZ, Zhang X, Wu HM, Kreissl MC, Huang SC (2007) Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. J Nucl Med 48(12):2037–2045. doi:10.2967/jnumed.107.041061

    Article  PubMed  CAS  Google Scholar 

  53. Zheng X, Wen L, Yu SJ, Huang SC, Feng DD (2012) A study of non-invasive Patlak quantification for whole-body dynamic FDG-PET studies of mice. Biomed Signal Process Control 7(5):438–446. doi:10.1016/j.bspc.2011.11.005

    Article  PubMed  Google Scholar 

  54. Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte JJ, Mascaux C, Meert AP, Roelandts M, Scherpereel A, Terrones Munoz V, Sculier JP (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol 5(5):612–619. doi:10.1097/JTO.0b013e3181d0a4f5

    PubMed  Google Scholar 

  55. Agarwal M, Brahmanday G, Bajaj SK, Ravikrishnan KP, Wong CY (2010) Revisiting the prognostic value of preoperative (18)F-fluoro-2-deoxyglucose ((18)F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC). Eur J Nucl Med Mol Imaging 37(4):691–698. doi:10.1007/s00259-009-1291-x

    Article  PubMed  Google Scholar 

  56. Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, Lee JY, Lee KH, Kim BT (2010) Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 17(1):115–122. doi:10.1245/s10434-009-0719-7

    Article  PubMed  Google Scholar 

  57. Choi JY, Jang HJ, Shim YM, Kim K, Lee KS, Lee KH, Choi Y, Choe YS, Kim BT (2004) 18F-FDG PET in patients with esophageal squamous cell carcinoma undergoing curative surgery: prognostic implications. J Nucl Med 45(11):1843–1850. doi:45/11/1843

    PubMed  Google Scholar 

  58. Blackstock AW, Farmer MR, Lovato J, Mishra G, Melin SA, Oaks T, Aklilu M, Clark PB, Levine EA (2006) A prospective evaluation of the impact of 18-F-fluoro-deoxy-d-glucose positron emission tomography staging on survival for patients with locally advanced esophageal cancer. Int J Radiat Oncol Biol Phys 64(2):455–460. doi:10.1016/j.ijrobp.2005.07.959

    Article  PubMed  Google Scholar 

  59. Cheze-Le Rest C, Metges JP, Teyton P, Jestin-Le Tallec V, Lozac’h P, Volant A, Visvikis D (2008) Prognostic value of initial fluorodeoxyglucose-PET in esophageal cancer: a prospective study. Nucl Med Commun 29(7):628–635. doi:10.1097/MNM.0b013e3282f81423

    Article  PubMed  CAS  Google Scholar 

  60. Bryant AS, Cerfolio RJ, Klemm KM, Ojha B (2006) Maximum standard uptake value of mediastinal lymph nodes on integrated FDG-PET-CT predicts pathology in patients with non-small cell lung cancer. Ann Thorac Surg 82(2):417–422; discussion 422–413. doi:10.1016/j.athoracsur.2005.12.047

  61. Rizk N, Downey RJ, Akhurst T, Gonen M, Bains MS, Larson S, Rusch V (2006) Preoperative 18[F]-fluorodeoxyglucose positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. Ann Thorac Surg 81(3):1076–1081. doi:10.1016/j.athoracsur.2005.09.063

    Article  PubMed  Google Scholar 

  62. Yu H, Caldwell C, Mah K, Mozeg D (2009) Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging 28(3):374–383

    Article  PubMed  Google Scholar 

  63. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, Corcos L, Visvikis D (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52(3):369–378. doi:10.2967/jnumed.110.082404

    Article  PubMed  Google Scholar 

  64. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, Thorstad W, Deasy JO (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 42(6):1162–1171. doi:10.1016/j.patcog.2008.08.011

    Article  PubMed  Google Scholar 

  65. Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU (2008) Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med 49(12):1973–1979. doi:10.2967/jnumed.108.053397

    Article  PubMed  Google Scholar 

  66. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 53(5):693–700. doi:10.2967/jnumed.111.099127

    Article  PubMed  Google Scholar 

  67. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49(7):1012–1016. doi:10.3109/0284186X.2010.498437

    Article  PubMed  Google Scholar 

  68. Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I (2012) Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol 102(2):239–245. doi:10.1016/j.radonc.2011.10.014

    Article  PubMed  Google Scholar 

  69. Willaime JM, Turkheimer FE, Kenny LM, Aboagye EO (2013) Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol 58(2):187–203. doi:10.1088/0031-9155/58/2/187

    Article  PubMed  CAS  Google Scholar 

  70. Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21(6):635–652. doi:10.1097/00004647-200106000-00002

    Article  PubMed  CAS  Google Scholar 

  71. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man; theory, procedure and normal values. J Clin Invest 27(4):476–483

    Article  PubMed  CAS  Google Scholar 

  72. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    Article  PubMed  CAS  Google Scholar 

  73. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15(3):217–227. doi:10.1002/ana.410150302

    Article  PubMed  CAS  Google Scholar 

  74. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10(5):740–747

    Article  PubMed  CAS  Google Scholar 

  75. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7

    Article  PubMed  CAS  Google Scholar 

  76. Cunningham VJ, Jones T (1993) Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 13(1):15–23

    Article  PubMed  CAS  Google Scholar 

  77. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4(3 Pt 1):153–158. doi:10.1006/nimg.1996.0066

    Article  PubMed  CAS  Google Scholar 

  78. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840. doi:10.1097/00004647-199609000-00008

    Article  PubMed  CAS  Google Scholar 

  79. Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA (1998) Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39(6):1043–1055

    PubMed  CAS  Google Scholar 

  80. Wells JM, Mankoff DA, Muzi M, O’Sullivan F, Eary JF, Spence AM, Krohn KA (2002) Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: compartmental model investigation and mathematical analysis. Mol Imaging 1(3):151–159

    Article  PubMed  CAS  Google Scholar 

  81. Wells JM, Mankoff DA, Eary JF, Spence AM, Muzi M, O’Sullivan F, Vernon CB, Link JM, Krohn KA (2002) Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: preliminary patient results. Mol Imaging 1(3):145–150

    Article  PubMed  CAS  Google Scholar 

  82. Tomasi G, Kimberley S, Rosso L, Aboagye E, Turkheimer F (2012) Double-input compartmental modeling and spectral analysis for the quantification of positron emission tomography data in oncology. Phys Med Biol 57(7):1889–1906. doi:10.1088/0031-9155/57/7/1889

    Article  PubMed  CAS  Google Scholar 

  83. Mankoff DA, Shields AF, Graham MM, Link JM, Krohn KA (1996) A graphical analysis method to estimate blood-to-tissue transfer constants for tracers with labeled metabolites. J Nucl Med 37(12):2049–2057

    PubMed  CAS  Google Scholar 

  84. Kenny L, Vigushin D, Al-Nahhas A, Osman S, Luthra S, Coombes C, Aboagye E (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21):10104–10112

    Article  PubMed  CAS  Google Scholar 

  85. Tomasi G, Kenny L, Mauri F, Turkheimer F, Aboagye EO (2011) Quantification of receptor–ligand binding with [(18)F]fluciclatide in metastatic breast cancer patients. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-011-1907-9

    PubMed  Google Scholar 

  86. Josephs D, Spicer J, O’Doherty M (2009) Molecular imaging in clinical trials. Target Oncol 4(3):151–168. doi:10.1007/s11523-009-0117-x

    Article  PubMed  Google Scholar 

  87. Fowler JS, Finn RD, Lambrecht RM, Wolf AP (1973) The synthesis of 18 F-5-fluorouracil. VII. J Nucl Med 14(1):63–64

    PubMed  CAS  Google Scholar 

  88. Saleem A, Brown GD, Brady F, Aboagye EO, Osman S, Luthra SK, Ranicar AS, Brock CS, Stevens MF, Newlands E, Jones T, Price P (2003) Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res 63(10):2409–2415

    PubMed  CAS  Google Scholar 

  89. McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ, Mintun MA, Katzenellenbogen JA, Welch MJ (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32(8):1526–1531

    PubMed  CAS  Google Scholar 

  90. Inoue T, Kim EE, Wallace S, Yang DJ, Wong FC, Bassa P, Cherif A, Delpassand E, Buzdar A, Podoloff DA (1996) Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother Radiopharm 11(4):235–245

    Article  PubMed  CAS  Google Scholar 

  91. Rosso L, Brock CS, Gallo JM, Saleem A, Price PM, Turkheimer FE, Aboagye EO (2009) A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res 69(1):120–127. doi:10.1158/0008-5472.CAN-08-2356

    Article  PubMed  CAS  Google Scholar 

  92. Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20(3):423–451. doi:10.1097/00004647-200003000-00001

    Article  PubMed  CAS  Google Scholar 

  93. Tomasi G (2011) Imaging endogenous neurotransmitters in vivo with Positron Emission Tomography displacement studies. Curr Psycopharmacol 1(1):29–43

    Google Scholar 

  94. Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M (2009) Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biol Psychiatry 65(12):1091–1093. doi:10.1016/j.biopsych.2008.12.007

    Article  PubMed  CAS  Google Scholar 

  95. Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, Cheze-le Rest C (2011) Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur J Nucl Med Mol Imaging 38(7):1191–1202. doi:10.1007/s00259-011-1755-7

    Article  PubMed  Google Scholar 

  96. Lee NY, Mechalakos JG, Nehmeh S, Lin Z, Squire OD, Cai S, Chan K, Zanzonico PB, Greco C, Ling CC, Humm JL, Schoder H (2008) Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 70(1):2–13. doi:10.1016/j.ijrobp.2007.06.039

    Article  PubMed  CAS  Google Scholar 

  97. Sovik A, Malinen E, Olsen DR (2009) Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 73(3):650–658. doi:10.1016/j.ijrobp.2008.11.001

    Article  PubMed  Google Scholar 

  98. South CP, Partridge M, Evans PM (2008) A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med Phys 35(10):4599–4611

    Article  PubMed  CAS  Google Scholar 

  99. Vees H, Senthamizhchelvan S, Miralbell R, Weber DC, Ratib O, Zaidi H (2009) Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 36(2):182–193. doi:10.1007/s00259-008-0943-6

    Article  PubMed  Google Scholar 

  100. Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37(11):2165–2187. doi:10.1007/s00259-010-1423-3

    Article  PubMed  Google Scholar 

  101. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, Kirsch CM (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46(8):1342–1348

    PubMed  Google Scholar 

  102. Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U (2008) A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 35(11):1989–1999. doi:10.1007/s00259-008-0875-1

    Article  PubMed  Google Scholar 

  103. Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893. doi:10.1109/TMI.2008.2012036

    Article  PubMed  Google Scholar 

  104. Le Maitre A, Hatt M, Pradier O, Cheze-le Rest C, Visvikis D (2012) Impact of the accuracy of automatic tumour functional volume delineation on radiotherapy treatment planning. Phys Med Biol 57(17):5381–5397. doi:10.1088/0031-9155/57/17/5381

    Article  PubMed  Google Scholar 

  105. Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, Vanderlinden B, Buvat I (2010) Comparative assessment of methods for estimating tumor volume and standardized uptake value in (18)F-FDG PET. J Nucl Med 51(2):268–276. doi:10.2967/jnumed.109.066241

    Article  PubMed  Google Scholar 

  106. Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D (2011) PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging 38(4):663–672. doi:10.1007/s00259-010-1688-6

    Article  PubMed  Google Scholar 

  107. Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R (2011) Impact of [(1)F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 38(12):2136–2144. doi:10.1007/s00259-011-1899-5

    Article  PubMed  Google Scholar 

  108. Zaidi H, Abdoli M, Fuentes CL, El Naqa IM (2012) Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-011-2053-0

    Google Scholar 

  109. Cheebsumon P, van Velden FH, Yaqub M, Frings V, de Langen AJ, Hoekstra OS, Lammertsma AA, Boellaard R (2011) Effects of image characteristics on performance of tumor delineation methods: a test-retest assessment. J Nucl Med 52(10):1550–1558. doi:10.2967/jnumed.111.088914

    Article  PubMed  CAS  Google Scholar 

  110. Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, Albarghach NM, Metges JP, Pradier O, Visvikis D (2010) Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements. J Nucl Med 51(9):1368–1376. doi:10.2967/jnumed.110.078501

    Article  PubMed  CAS  Google Scholar 

  111. Zaidi H, Abdoli M, Fuentes CL, El Naqa IM (2012) Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 39(5):881–891. doi:10.1007/s00259-011-2053-0

    Article  PubMed  Google Scholar 

  112. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347. doi:10.1007/s00259-007-0379-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Prof. R. Boellaard, Dr. Clement Hemonnot and Dr. Julien Williame who kindly provided Figs. 2, 6 and 8, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric O. Aboagye.

Glossary

Annihilation event:

As the radioisotope undergoes decay by positron emission, the emitted positron travels in tissue for a short distance (typically less than 1 mm), until it decelerates to a point where it can interact with an electron of the surrounding tissue. The encounter annihilates both electron and positron (annihilation event), producing a pair of annihilation photons (gamma rays), moving in approximately opposite directions, which are detected by the PET scanner.

Coincidence event:

The raw data collected by a PET scanner are a list of “coincidence events” representing near-simultaneous detection (typically, within a window of 6–12 ns of each other) of annihilation photons by a pair of detectors. The line in space connecting the two detectors along which the positron emission occurred is called line of response (LOR).

Dead time:

Time after each event during which the detector of the scanner is not able to record another event.

Attenuation correction:

Only a fraction of the emitted photons are able to reach the PET scanner; a significant fraction, highly dependent on the organ being imaged, is absorbed by the surrounding tissue. This phenomenon (attenuation) must be corrected for, or the resulting images will be biased with a higher activity at the edge of the imaged object (i.e. in a brain scan, not correcting for attenuation will give rise to images where the activity of the skull is erroneously overestimated).

Scattered coincidence:

A scattered coincidence is one in which at least one of the detected photons has undergone at least one (or more) Compton scattering prior to detection. Since the direction of the photon is changed during the Compton scattering process, the resulting coincidence event will be assigned to the wrong LOR. Scattered coincidences add a background to the true coincidence distribution which changes slowly with position and add statistical noise to the signal. The number of scattered events detected depends on the volume and attenuation characteristics of the object being imaged, and on the geometry of the camera.

Random coincidences:

Random coincidences occur when two photons arising from different annihilation events are detected within the coincidence time window of the system and therefore attributed to the same annihilation event. As with scattered events, the number of random coincidences detected depends on the volume and attenuation characteristics of the object being imaged, and on the geometry of the camera. The distribution of random coincidences is fairly uniform across the FOV, and will cause isotope concentrations to be overestimated if not corrected for.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasi, G., Aboagye, E.O. Introduction to the analysis of PET data in oncology. J Pharmacokinet Pharmacodyn 40, 419–436 (2013). https://doi.org/10.1007/s10928-013-9307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9307-3

Keywords

Navigation