Skip to main content

Advertisement

Log in

An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

When modeling is required to describe pharmacokinetics and pharmacodynamics simultaneously, it is difficult to link time-concentration profiles and drug effects. When patients are under chemotherapy, despite the huge amount of blood monitoring numerations, there is a lack of exposure variables to describe hematotoxicity linked with the circulating drug blood levels. We developed an interface model that transforms circulating pharmacokinetic concentrations to adequate exposures, destined to be inputs of the pharmacodynamic process. The model is materialized by a nonlinear differential equation involving three parameters. The relevance of the interface model for dosage adjustment is illustrated by numerous simulations. In particular, the interface model is incorporated into a complex system including pharmacokinetics and neutropenia induced by docetaxel and by cisplatin. Emphasis is placed on the sensitivity of neutropenia with respect to the variations of the drug amount. This complex system including pharmacokinetic, interface, and pharmacodynamic hematotoxicity models is an interesting tool for analysis of hematotoxicity induced by anticancer agents. The model could be a new basis for further improvements aimed at incorporating new experimental features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Derendorf H, Hochhaus G (1995) Handbook of pharmacokinetic/pharmacodynamic correlation. CRC

  2. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16:176–185. doi:10.1023/A:1011907920641

    Article  PubMed  CAS  Google Scholar 

  3. Macheras P, Iliadis A (2005) Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics. Homogeneous and heterogeneous approaches. Springer Verlag, New York

    Google Scholar 

  4. Powis G (1985) Anticancer drug pharmacodynamics. Cancer Chemother Pharmacol 14:177–183. doi:10.1007/BF00258112

    Article  PubMed  CAS  Google Scholar 

  5. Collins JM, Grieshaber CK, Chabner BA (1990) Pharmacologically guided Phase I clinical trials based upon preclinical drug development. J Natl Cancer Inst 82:1321–1326. doi:10.1093/jnci/82.16.1321

    Article  PubMed  CAS  Google Scholar 

  6. Ratain MJ, Schilsky RL, Conley BA, Egorin MJ (1990) Pharmacodynamics in cancer therapy. J Clin Oncol 8:1739–1753

    PubMed  CAS  Google Scholar 

  7. Stewart CF, Arbuck SG, Fleming RA, Evans WE (1991) Relation of systemic exposure to unbound etoposide and hematologic toxicity. Clin Pharmacol Ther 50:385–393

    Article  PubMed  CAS  Google Scholar 

  8. Jakobsen P, Bastholt L, Dalmark M, Pfeiffer P, Petersen D, Gjedde SB, Sandberg E, Rose C, Nielsen OS, Mouridsen HT (1991) A randomized study of epirubicin at four different dose levels in advanced breast cancer. Feasibility of myelotoxicity prediction through single blood-sample measurement. Cancer Chemother Pharmacol 28:465–469. doi:10.1007/BF00685824

    Article  PubMed  CAS  Google Scholar 

  9. Mick R, Ratain MJ (1993) Statistical approaches to pharmacodynamic modeling: motivations, methods, and misperceptions. Cancer Chemother Pharmacol 33:1–9. doi:10.1007/BF00686015

    Article  PubMed  CAS  Google Scholar 

  10. Calvert AH (1994) Dose optimisation of carboplatin in adults. Anticancer Res 14:2273–2278

    PubMed  CAS  Google Scholar 

  11. Joel SP, Shah R, Slevin ML (1994) Etoposide dosage and pharmacodynamics. Cancer Chemother Pharmacol 34:S69–S75. doi:10.1007/BF00684867

    Article  PubMed  Google Scholar 

  12. Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Locatelli A, Bonadonna G, Egorin MJ (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    PubMed  CAS  Google Scholar 

  13. Ohtsu T, Sasaki Y, Tamura T, Miyata Y, Nakanomyo H, Nishiwaki Y, Saijo N (1995) Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion. Clin Cancer Res 1:599–606

    PubMed  CAS  Google Scholar 

  14. Braakhuis BJ (1995) RuizVanHaperen VW, Boven E, Veerman G, Peters GJ. Schedule-dependent antitumor effect of gemcitabine in in vivo model system. Semin Oncol 22:42–46

    PubMed  CAS  Google Scholar 

  15. Friberg LE, Karlsson MO (2003) Mechanistic models for myelosuppression. Invest New Drugs 21:183–194. doi:10.1023/A:1023573429626

    Article  PubMed  CAS  Google Scholar 

  16. Minami H, Sasaki Y, Saijo N, Ohtsu T, Fujii H, Igarashi T, Itoh K (1998) Indirect-response model for the time course of leukopenia with anticancer drugs. Clin Pharmacol Ther 64:511–521. doi:10.1016/S0009-9236(98)90134-5

    Article  PubMed  CAS  Google Scholar 

  17. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721. doi:10.1200/JCO.2002.02.140

    Article  PubMed  Google Scholar 

  18. Krzyzanski W, Jusko WJ (2002) Multiple-pool cell lifespan model of hematologic effects of anticancer agents. J Pharmacokinet Pharmacodyn 29:311–337. doi:10.1023/A:1020984823092

    Article  PubMed  CAS  Google Scholar 

  19. Karlsson MO, Anehall T, Friberg LE, Henningsson A, Kloft C, Sandstrom M, Xie R (2005) Pharmacokinetic/pharmacodynamic modelling in oncological drug development. Basic Clin Pharmacol Toxicol 96:206–211. doi:10.1111/j.1742-7843.2005.pto960310.x

    Article  PubMed  CAS  Google Scholar 

  20. Sandstrom M, Lindman H, Nygren P, Lidbrink E, Bergh J, Karlsson MO (2005) Model describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin-docetaxel regimen in breast cancer patients. J. Clin, Oncol

    Google Scholar 

  21. Ljung L (1999) System identification: theory for the user. Prentice Hall, New Jersey

    Google Scholar 

  22. Iliadis A, Barbolosi D (2000) Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Comput Biomed Res 33:211–226. doi:10.1006/cbmr.2000.1540

    Article  PubMed  CAS  Google Scholar 

  23. Barbolosi D, Ciccolini J, Iliadis A (2002) Optimising drug regimen in chemotherapy by an efficacy-toxicity model. Presented at 93th annual meeting of the American Association for Cancer Research, San Francisco

  24. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25:358–371

    PubMed  CAS  Google Scholar 

  25. Rubinow SI, Lebowitz JL (1975) A mathematical model of neutrophil production and control in normal man. J Math Biol 1:187–225. doi:10.1007/BF01273744

    Article  Google Scholar 

  26. Mackey MC (1978) Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51:941–956

    PubMed  CAS  Google Scholar 

  27. Mackey MC (1979) Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull Math Biol 41:829–834

    PubMed  CAS  Google Scholar 

  28. Bernard S, Belair J, Mackey MC (2003) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223:283–298. doi:10.1016/S0022-5193(03)00090-0

    Article  PubMed  Google Scholar 

  29. Norton JP (1986) An introduction to identification. Academic Press, London

    Google Scholar 

  30. Bruno R, Vivier N, Vergniol JC, Phillips SLd, Montay G, Sheiner LB (1996) A population pharmacokinetic model for docetaxel (Taxotere): model building and validation. J Pharmacokinet Biopharm 24:153–172. doi:10.1007/BF02353487

    Article  PubMed  CAS  Google Scholar 

  31. Monjanel-Mouterde S, Ciccolini J, Bagarry D, Zonta-David M, Duffaud F, Favre R, Durand A (2003) Population pharmacokinetics of cisplatin after 120-h infusion: application to routine adaptive control with feedback. J Clin Pharm Ther 28:109–116. doi:10.1046/j.1365-2710.2003.00468.x

    Article  PubMed  CAS  Google Scholar 

  32. MATLAB (2006) High-performance numeric computation and visualization software, Version 7.3.0. The Math Works, Natick MA

    Google Scholar 

  33. Extra JM, Rousseau F, Bruno R, Clavel M, LeBail N, Marty M (1993) Phase I and pharmacokinetic study of Taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer Res 53:1037–1042

    PubMed  CAS  Google Scholar 

  34. Henningsson A, Karlsson MO, Vigano L, Gianni L, Verweij J, Sparreboom A (2001) Mechanism-based pharmacokinetic model for paclitaxel. J Clin Oncol 19:4065–4073

    PubMed  CAS  Google Scholar 

  35. Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD (2006) Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 57:427–435. doi:10.1007/s00280-005-0035-2

    Article  PubMed  Google Scholar 

  36. Latz JE, Karlsson MO, Rusthoven JJ, Ghosh A, Johnson RD (2006) A semimechanistic-physiologic population pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 57:412–426. doi:10.1007/s00280-005-0077-5

    Article  PubMed  Google Scholar 

  37. Hing J, Perez-Ruixo JJ, Stuyckens K, Soto-Matos A, Lopez-Lazaro L, Zannikos P (2008) Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of trabectedin (ET-743, Yondelis) induced neutropenia. Clin Pharmacol Ther 83:130–143. doi:10.1038/sj.clpt.6100259

    Article  PubMed  CAS  Google Scholar 

  38. Karlsson MO, Molnar V, Bergh J, Freijs A, Larsson R (1998) A general model for time-dissociated pharmacokinetic-pharmacodynamic relationships exemplified by paclitaxel myelosuppression. Clin Pharmacol Ther 63:11–25. doi:10.1016/S0009-9236(98)90117-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This development constitutes a part of the Model 1 project supported by the Hospices de Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Iliadis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meille, C., Iliadis, A., Barbolosi, D. et al. An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics. J Pharmacokinet Pharmacodyn 35, 619–633 (2008). https://doi.org/10.1007/s10928-008-9106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-008-9106-4

Keywords

Navigation