Skip to main content

Advertisement

Log in

Potential γ-Hydroxybutyric acid (GHB) Drug Interactions Through Blood–Brain Barrier Transport Inhibition: A Pharmacokinetic Simulation-Based Evaluation

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Recreational abuse or overdose of γ-hydroxybutyric acid (GHB) results in dose-dependent central nervous system (CNS) effects including death. As GHB undergoes monocarboxylic acid transporter (MCT)-mediated transport across the blood–brain barrier (BBB), one possible strategy for the management of GHB toxicity/overdose involves inhibition of GHB BBB transport. To test this strategy, interactions between GHB and MCT substrates (salicylic acid or probenecid) were simulated. Competitive, noncompetitive and uncompetitive inhibition mechanisms were incorporated into the GHB–MCT substrate interaction model for inhibitor dosing either pre-, concurrent or post-GHB administration. Simulations suggested that salicylic acid was the better candidate to limit GHB accumulation in the CNS. A time window of effect (> 10% change) was observed for salicylic acid pre- and post-administration, with maximal transport inhibition occurring within 12 hr of pre- and 2 hr of post-administration. Consistent with the prediction that reduced GHB brain concentrations could translate to decreased pharmacodynamic effects, a pilot study in rats showed that the pronounced GHB sedative/hypnotic effects (24.0 ± 6.51 min; n = 4) in the control group (1.58 mmol/kg GHB plus saline) were significantly (p  < 0.05) abrogated by salicylic acid (1.25 mmol/kg) coadministration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth R.H. (1970). Formation and regional distribution of gamma-hydroxybutyric acid in mammalian brain. Biochem. Pharmacol. 19:3013–3019

    Article  PubMed  CAS  Google Scholar 

  2. Nelson T., Kaufman E., Kline J., Sokoloff L. (1981). The extraneural distribution of gamma-hydroxybutyrate. J. Neurochem. 37:1345–1348

    Article  PubMed  CAS  Google Scholar 

  3. Dyer J.E. (1991). Gamma-Hydroxybutyrate: a health-food product producing coma and seizurelike activity. Am. J. Emerg. Med. 9:321–324

    Article  PubMed  CAS  Google Scholar 

  4. Dyer J.E., Roth B., and Hyma B.A. (2001). Gamma-hydroxybutyrate withdrawal syndrome. Ann. Emerg. Med. 37:147–153

    Article  PubMed  CAS  Google Scholar 

  5. Okun M.S., Boothby L.A., Bartfield R.B., and Doering P.L. (2001). GHB: an important pharmacologic and clinical update. J. Pharm. Pharm. Sci. 4:167–175

    PubMed  CAS  Google Scholar 

  6. Nicholson K.L., Balster R.L. (2001). GHB: a new and novel drug of abuse. Drug Alcohol Depend. 63:1–22

    Article  PubMed  CAS  Google Scholar 

  7. Lettieri J.T., Fung H.L. (1979). Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat. J. Pharmacol. Exp. Ther. 208:7–11

    CAS  Google Scholar 

  8. Saunders N.R., Habgood M.D., and Dziegielewska K.M. (1999). Barrier mechanisms in the brain, I. Adult brain. Clin. Exp. Pharmacol. Physiol. 26:11–19

    Article  CAS  Google Scholar 

  9. Pardridge W.M. (1997). Drug delivery to the brain. J. Cereb. Blood Flow Metab. 17:713–731

    Article  PubMed  CAS  Google Scholar 

  10. Lee G., Dallas S., Hong M., and Bendayan R. (2001). Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol. Rev. 53:569–596

    PubMed  CAS  Google Scholar 

  11. Bhattacharya I., Boje K.M. (2004). GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood-brain barrier. J. Pharmacol. Exp. Ther. 311:92–98

    Article  PubMed  CAS  Google Scholar 

  12. Echols R.M., Heyd A., O’Keeffe B.J., Schacht P. (1994). Single-dose ciprofloxacin for the treatment of uncomplicated gonorrhea: a worldwide summary. Sex. Transm. Dis. 21:345–352

    Article  PubMed  CAS  Google Scholar 

  13. Augenbraun M.H., and Rolfs R. (1999). Treatment of syphilis, 1998: nonpregnant adults. Clin. Infect. Dis. 28 Suppl 1:S21–28

    Article  PubMed  Google Scholar 

  14. Pao D., Goh B.T., and Bingham J.S. (2002). Management issues in syphilis. Drugs 62:1447–1461

    Article  PubMed  CAS  Google Scholar 

  15. Haverkos H.W. (1991). Infectious diseases and drug abuse. Prevention and treatment in the drug abuse treatment system. J. Subst. Abuse Treat. 8:269–275

    CAS  Google Scholar 

  16. Hwang L.Y., Ross M.W., Zack C., Bull L., Rickman K., and Holleman M. (2000). Prevalence of sexually transmitted infections and associated risk factors among populations of drug abusers. Clin. Infect. Dis. 31:920–926

    Article  PubMed  CAS  Google Scholar 

  17. M. Clinical Pharmacology. Valproic Acid http://cp.gsm.com/.

  18. Wroblewski B.A., Joseph A.B., Kupfer J., and Kalliel K. (1997). Effectiveness of valproic acid on destructive and aggressive behaviours in patients with acquired brain injury. Brain Inj. 11:37–47

    Article  PubMed  CAS  Google Scholar 

  19. Rosenberg G. (1990). Brain Fluids and Metabolism. Oxford University Press, New York, pp. 15–53

    Google Scholar 

  20. Davies B., Morris T. (1993). Physiological parameters in laboratory animals and humans. Pharm. Res. 10:1093–1095

    Article  PubMed  CAS  Google Scholar 

  21. Coolens J.L., Van Baelen H., Heyns W. (1987). Clinical use of unbound plasma cortisol as calculated from total cortisol and corticosteroid-binding globulin. J. Steroid Biochem. 26:197–202

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez M.A., Tozer T.N., and Chang T.T. (1975). Nonlinear tissue disposition: salicylic acid in rat brain. J. Pharm. Sci. 64:99–103

    Article  PubMed  CAS  Google Scholar 

  23. Hirate J., Kato Y., Horikoshi I., Nagase S., and Ueda C.T. (1989). Further observations on the disposition characteristics of salicylic acid in analbuminemic rats. Biopharm. Drug Dispos. 10:299–309

    Article  PubMed  CAS  Google Scholar 

  24. Yue T.L., and Varma D.R. (1982). Pharmacokinetics, metabolism and disposition of salicylate in protein-deficient rats. Drug Metab. Dispos. 10:147–152

    PubMed  CAS  Google Scholar 

  25. Emanuelsson B.M., and Paalzow L.K. (1988). Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm. Drug Dispos. 9:59–70

    Article  PubMed  CAS  Google Scholar 

  26. Terasaki T., Takakuwa S., Moritani S., and Tsuji A. (1991). Transport of monocarboxylic acids at the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. J. Pharmacol. Exp. Ther. 258:932–937

    PubMed  CAS  Google Scholar 

  27. Kaufman E.E., Nelson T., Goochee C., and Sokoloff L. (1979). Purification and characterization of an NADP+-linked alcohol oxido-reductase which catalyzes the interconversion of gamma-hydroxybutyrate and succinic semialdehyde. J. Neurochem. 32:699–712

    Article  PubMed  CAS  Google Scholar 

  28. Kaufman E.E., and Nelson T. (1981). Kinetics of coupled gamma-hydroxybutyrate oxidation and D-glucuronate reduction by an NADP+-dependent oxidoreductase. J. Biol. Chem. 256:6890–6894

    PubMed  CAS  Google Scholar 

  29. Giarman N.J., and Roth R.H. (1964). Differential estimation of gamma-butyrolactone and gamma-hydroxybutyric acid in rat blood and brain. Science 145:583–584

    Article  PubMed  CAS  Google Scholar 

  30. Perel J.M., Levitt M., and Dunner D.L. (1974). Plasma and cerebrospinal fluid probenecid concentrations as related to accumulation of acidic biogenic amine metabolites in man. Psychopharmacologia 35:83–90

    Article  CAS  Google Scholar 

  31. Borgen L.A., Okerholm R.A., Lai A., and Scharf M.B. (2004). The pharmacokinetics of sodium oxybate oral solution following acute and chronic administration to narcoleptic patients. J. Clin. Pharmacol. 44:253–257

    Article  PubMed  CAS  Google Scholar 

  32. Kalasinsky K.S., Dixon M.M., Schmunk G.A., and Kish S.J. (2001). Blood, brain, and hair GHB concentrations following fatal ingestion. J. Forensic Sci. 46:728–730

    PubMed  CAS  Google Scholar 

  33. Deguchi Y., Nozawa K., Yamada S., Yokoyama Y., and Kimura R. (1997). Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J. Pharmacol. Exp. Ther. 280:551–560

    PubMed  CAS  Google Scholar 

  34. Dromgoole S.H., and Furst D.E. (1994). Salicylates. In: Evans W.E., Schentag J.J., and Jusko W.J. (eds) Applied Pharmacokinetics Principles of Therapeutic Drug Monitoring. Applied Therapeutics, Inc, Vancouver, Washington, pp. 32–34

    Google Scholar 

  35. Roth R., Giarman N. (1966). Gamma-butyrolactone and gamma-hydroxybutyric acid-I. Distribution and metabolism. Biochem. Pharmacol. 15:1333–1348

    CAS  Google Scholar 

  36. Enerson B.E., and Drewes L.R. (2003). Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92:1531–1544

    Article  PubMed  CAS  Google Scholar 

  37. Morris M.E., Hu K., and Wang Q. (2005). Renal clearance of gamma-hydroxybutyric acid in rats: increasing renal elimination as a detoxification strategy. J. Pharmacol. Exp. Ther. 313:1194–1202

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. K. Boje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, I., Boje, K.M.K. Potential γ-Hydroxybutyric acid (GHB) Drug Interactions Through Blood–Brain Barrier Transport Inhibition: A Pharmacokinetic Simulation-Based Evaluation. J Pharmacokinet Pharmacodyn 33, 657–681 (2006). https://doi.org/10.1007/s10928-006-9029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-006-9029-x

Keywords

Navigation