Skip to main content

Advertisement

Log in

γ-Hydroxybutyric Acid: Pharmacokinetics, Pharmacodynamics, and Toxicology

  • Review Article
  • Theme: Celebrating Women in the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Gamma-hydroxybutyrate (GHB) is a short-chain fatty acid present endogenously in the brain and used therapeutically for the treatment of narcolepsy, as sodium oxybate, and for alcohol abuse/withdrawal. GHB is better known however as a drug of abuse and is commonly referred to as the “date–rape drug”; current use in popular culture includes recreational “chemsex,” due to its properties of euphoria, loss of inhibition, amnesia, and drowsiness. Due to the steep concentration–effect curve for GHB, overdoses occur commonly and symptoms include sedation, respiratory depression, coma, and death. GHB binds to both GHB and GABAB receptors in the brain, with pharmacological/toxicological effects mainly due to GABAB agonist effects. The pharmacokinetics of GHB are complex and include nonlinear absorption, metabolism, tissue uptake, and renal elimination processes. GHB is a substrate for monocarboxylate transporters, including both sodium-dependent transporters (SMCT1, 2; SLC5A8; SLC5A12) and proton-dependent transporters (MCT1–4; SLC16A1, 7, 8, and 3), which represent significant determinants of absorption, renal reabsorption, and brain and tissue uptake. This review will provide current information of the pharmacology, therapeutic effects, and pharmacokinetics/pharmacodynamics of GHB, as well as therapeutic strategies for the treatment of overdoses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. White CM. Pharmacologic, pharmacokinetic, and clinical assessment of illicitly used gamma-hydroxybutyrate. J Clin Pharmacol. 2017;57(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  2. Laborit H. Sodium 4-hydroxybutyrate. Int J Neuropharmacol. 1964;3:433–51.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Prog Biomed. 2010;99(3):306–14.

    Article  Google Scholar 

  4. Carter LP, Pardi D, Gorsline J, Griffiths RR. Illicit gamma-hydroxybutyrate (GHB) and pharmaceutical sodium oxybate (Xyrem): differences in characteristics and misuse. Drug Alcohol Depend. 2009;104(1–2):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van den Brink W, Addolorato G, Aubin HJ, Benyamina A, Caputo F, Dematteis M, et al. Efficacy and safety of sodium oxybate in alcohol-dependent patients with a very high drinking risk level. Addict Biol. 2018;23(4):969–86.

    Article  PubMed  Google Scholar 

  6. Kim SY, Anderson IB, Dyer JE, Barker JC, Blanc PD. High-risk behaviors and hospitalizations among gamma hydroxybutyrate (GHB) users. Am J Drug Alcohol Abuse. 2007;33(3):429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liakoni E, Walther F, Nickel CH, Liechti ME. Presentations to an urban emergency department in Switzerland due to acute gamma-hydroxybutyrate toxicity. Scand J Trauma Resusc Emerg Med. 2016;24(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Britt GC, McCance-Katz EF. A brief overview of the clinical pharmacology of “club drugs”. Subst Use Misuse. 2005;40(9–10):1189–201.

    Article  PubMed  Google Scholar 

  9. WHO. Gamma-hydroxybutyric acid (GHB) critical review report. Hammamet, Tunisia; 2012.

  10. Busardo FP, Gottardi M, Tini A, Minutillo A, Sirignano A, Marinelli E, et al. Replacing GHB with GBL in recreational settings: a new trend in chemsex. Curr Drug Metab. 2018;19(13):1080–5.

    Article  CAS  PubMed  Google Scholar 

  11. Griffiths RR, Johnson MW. Relative abuse liability of hypnotic drugs: a conceptual framework and algorithm for differentiating among compounds. J Clin Psychiatry. 2005;66(Suppl 9):31–41.

    CAS  PubMed  Google Scholar 

  12. Corkery JM, Loi B, Claridge H, Goodair C, Schifano F. Deaths in the lesbian, gay, bisexual and transgender United Kingdom communities associated with GHB and precursors. Curr Drug Metab. 2018;19(13):1086–99.

    Article  CAS  PubMed  Google Scholar 

  13. Hockenhull J, Murphy KG, Paterson S. An observed rise in gamma-hydroxybutyrate-associated deaths in London: evidence to suggest a possible link with concomitant rise in chemsex. Forensic Sci Int. 2017;270:93–7.

    Article  CAS  PubMed  Google Scholar 

  14. Moresco M, Pizza F, Antelmi E, Plazzi G. Sodium oxybate treatment in pediatric type 1 narcolepsy. Curr Drug Metab. 2018;19:1073–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hammoud MA, Bourne A, Maher L, Jin F, Haire B, Lea T, et al. Intensive sex partying with gamma-hydroxybutyrate: factors associated with using gamma-hydroxybutyrate for chemsex among Australian gay and bisexual men-results from the Flux Study. Sex Health. 2018;15(2):123–34.

    Article  PubMed  Google Scholar 

  16. Schecke H, Lea T, Bohn A, Kohler T, Sander D, Scherbaum N, et al. Crystal methamphetamine use in sexual settings among German men who have sex with men. Front Psychiatry. 2019;10:886.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bay T, Eghorn LF, Klein AB, Wellendorph P. GHB receptor targets in the CNS: focus on high-affinity binding sites. Biochem Pharmacol. 2014;87(2):220–8.

    Article  CAS  PubMed  Google Scholar 

  18. Absalom N, Eghorn LF, Villumsen IS, Karim N, Bay T, Olsen JV, et al. Alpha4betadelta GABA(A) receptors are high-affinity targets for gamma-hydroxybutyric acid (GHB). Proc Natl Acad Sci U S A. 2012;109(33):13404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carai MA, Colombo G, Brunetti G, Melis S, Serra S, Vacca G, et al. Role of GABA(B) receptors in the sedative/hypnotic effect of gamma-hydroxybutyric acid. Eur J Pharmacol. 2001;428(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  20. Cash CD. Gamma-hydroxybutyrate: an overview of the pros and cons for it being a neurotransmitter and/or a useful therapeutic agent. Neurosci Biobehav Rev. 1994;18(2):291–304.

    Article  CAS  PubMed  Google Scholar 

  21. Maitre M, Klein C, Mensah-Nyagan AG. Mechanisms for the specific properties of gamma-hydroxybutyrate in brain. Med Res Rev. 2016;36(3):363–88.

    Article  CAS  PubMed  Google Scholar 

  22. Gobaille S, Hechler V, Andriamampandry C, Kemmel V, Maitre M. Gamma-hydroxybutyrate modulates synthesis and extracellular concentration of gamma-aminobutyric acid in discrete rat brain regions in vivo. J Pharmacol Exp Ther. 1999;290(1):303–9.

    CAS  PubMed  Google Scholar 

  23. Castelli MP, Ferraro L, Mocci I, Carta F, Carai MA, Antonelli T, et al. Selective gamma-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of gamma-hydroxybutyric acid. J Neurochem. 2003;87(3):722–32.

    Article  CAS  PubMed  Google Scholar 

  24. Hechler V, Gobaille S, Bourguignon JJ, Maitre M. Extracellular events induced by gamma-hydroxybutyrate in striatum: a microdialysis study. J Neurochem. 1991;56(3):938–44.

    Article  CAS  PubMed  Google Scholar 

  25. Kaupmann K, Cryan JF, Wellendorph P, Mombereau C, Sansig G, Klebs K, et al. Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA(B)(1)-deficient mice. Eur J Neurosci. 2003;18(10):2722–30.

    Article  PubMed  Google Scholar 

  26. Morse BL, Vijay N, Morris ME. Gamma-hydroxybutyrate (GHB)-induced respiratory depression: combined receptor-transporter inhibition therapy for treatment in GHB overdose. Mol Pharmacol. 2012;82(2):226–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carai MA, Lobina C, Maccioni P, Cabras C, Colombo G, Gessa GL. Gamma-aminobutyric acidB (GABAB)-receptor mediation of different in vivo effects of gamma-butyrolactone. J Pharmacol Sci. 2008;106(2):199–207.

    Article  CAS  PubMed  Google Scholar 

  28. Dornbierer DA, Baur DM, Stucky B, Quednow BB, Kraemer T, Seifritz E, et al. Neurophysiological signature of gamma-hydroxybutyrate augmented sleep in male healthy volunteers may reflect biomimetic sleep enhancement: a randomized controlled trial. Neuropsychopharmacology. 2019;44(11):1985–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ito Y, Ishige K, Zaitsu E, Anzai K, Fukuda H. Gamma-hydroxybutyric acid increases intracellular Ca2+ concentration and nuclear cyclic AMP-responsive element- and activator protein 1 DNA-binding activities through GABAB receptor in cultured cerebellar granule cells. J Neurochem. 1995;65(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  30. Mathivet P, Bernasconi R, De Barry J, Marescaux C, Bittiger H. Binding characteristics of gamma-hydroxybutyric acid as a weak but selective GABAB receptor agonist. Eur J Pharmacol. 1997;321(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  31. Ishige K, Aizawa M, Ito Y, Fukuda H. Gamma-butyrolactone-induced absence-like seizures increase nuclear CRE- and AP-1 DNA-binding activities in mouse brain. Neuropharmacology. 1996;35(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  32. Bernasconi R, Lauber J, Marescaux C, Vergnes M, Martin P, Rubio V, et al. Experimental absence seizures: potential role of gamma-hydroxybutyric acid and GABAB receptors. J Neural Transm Suppl. 1992;35:155–77.

    CAS  PubMed  Google Scholar 

  33. Jacobson LH, Vlachou S, Slattery DA, Li X, Cryan JF. The gamma-aminobutyric acid B receptor in depression and reward. Biol Psychiatry. 2018;83(11):963–76.

    Article  CAS  PubMed  Google Scholar 

  34. Bolser DC, Blythin DJ, Chapman RW, Egan RW, Hey JA, Rizzo C, et al. The pharmacology of SCH 50911: a novel, orally-active GABA-beta receptor antagonist. J Pharmacol Exp Ther. 1995;274(3):1393–8.

    CAS  PubMed  Google Scholar 

  35. Lingenhoehl K, Brom R, Heid J, Beck P, Froestl W, Kaupmann K, et al. Gamma-hydroxybutyrate is a weak agonist at recombinant GABA(B) receptors. Neuropharmacology. 1999;38(11):1667–73.

    Article  CAS  PubMed  Google Scholar 

  36. Froestl W. Chemistry and pharmacology of GABAB receptor ligands. Adv Pharmacol. 2010;58:19–62.

    Article  CAS  PubMed  Google Scholar 

  37. Goodwin AK, Griffiths RR, Brown PR, Froestl W, Jakobs C, Gibson KM, et al. Chronic intragastric administration of gamma-butyrolactone produces physical dependence in baboons. Psychopharmacology. 2006;189(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  38. Goodwin AK, Froestl W, Weerts EM. Involvement of gamma-hydroxybutyrate (GHB) and GABA-B receptors in the acute behavioral effects of GHB in baboons. Psychopharmacology. 2005;180(2):342–51.

    Article  CAS  PubMed  Google Scholar 

  39. Morse BL, Morris ME. Toxicokinetics/toxicodynamics of gamma-hydroxybutyrate-ethanol intoxication: evaluation of potential treatment strategies. J Pharmacol Exp Ther. 2013;346(3):504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hodor A, Palchykova S, Gao B, Bassetti CL. Baclofen and gamma-hydroxybutyrate differentially altered behavior, EEG activity and sleep in rats. Neuroscience. 2015;284:18–28.

    Article  CAS  PubMed  Google Scholar 

  41. Koek W, France CP. Cataleptic effects of gamma-hydroxybutyrate (GHB) and baclofen in mice: mediation by GABA(B) receptors, but differential enhancement by N-methyl-d-aspartate (NMDA) receptor antagonists. Psychopharmacology. 2008;199(2):191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koek W, Chen W, Mercer SL, Coop A, France CP. Discriminative stimulus effects of gamma-hydroxybutyrate: role of training dose. J Pharmacol Exp Ther. 2006;317(1):409–17.

    Article  CAS  PubMed  Google Scholar 

  43. Gold BI, Roth RH. Kinetics of in vivo conversion of gamma-[3H]aminobutyric acid to gamma-[3H]hydroxybutyric acid by rat brain. J Neurochem. 1977;28(5):1069–73.

    Article  CAS  PubMed  Google Scholar 

  44. Brenneisen R, Elsohly MA, Murphy TP, Passarelli J, Russmann S, Salamone SJ, et al. Pharmacokinetics and excretion of gamma-hydroxybutyrate (GHB) in healthy subjects. J Anal Toxicol. 2004;28(8):625–30.

    Article  CAS  PubMed  Google Scholar 

  45. Roth RH, Giarman NJ. Gamma-butyrolactone and gamma-hydroxybutyric acid I: distribution and metabolism. Biochem Pharmacol. 1966;15:1333–48.

    Article  CAS  Google Scholar 

  46. Wong CG, Gibson KM, Snead OC 3rd. From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci. 2004;25(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  47. Struys EA, Verhoeven NM, Jansen EE, Ten Brink HJ, Gupta M, Burlingame TG, et al. Metabolism of gamma-hydroxybutyrate to d-2-hydroxyglutarate in mammals: further evidence for d-2-hydroxyglutarate transhydrogenase. Metabolism. 2006;55(3):353–8.

    Article  CAS  PubMed  Google Scholar 

  48. Liakoni E, Gugelmann H, Dempsey DA, Wiegand TJ, Havel C, Jacob P, et al. Butanediol conversion to gamma-hydroxybutyrate markedly reduced by the alcohol dehydrogenase blocker fomepizole. Clin Pharmacol Ther. 2019;105(5):1196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vayer P, Mandel P, Maitre M. Conversion of gamma-hydroxybutyrate to gamma-aminobutyrate in vitro. J Neurochem. 1985;45(3):810–4.

    Article  CAS  PubMed  Google Scholar 

  50. Snead OC 3rd, Furner R, Liu CC. In vivo conversion of gamma-aminobutyric acid and 1,4-butanediol to gamma-hydroxybutyric acid in rat brain. Studies using stable isotopes. Biochem Pharmacol. 1989;38(24):4375–80.

    Article  CAS  PubMed  Google Scholar 

  51. Kaufman EE, Nelson T. An overview of gamma-hydroxybutyrate catabolism: the role of the cytosolic NADP(+)-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway. Neurochem Res. 1991;16(9):965–74.

    Article  CAS  PubMed  Google Scholar 

  52. Alzeer S, Ellis EM. Metabolism of gamma hydroxybutyrate in human hepatoma HepG2 cells by the aldo-keto reductase AKR1A1. Biochem Pharmacol. 2014;92(3):499–505.

    Article  CAS  PubMed  Google Scholar 

  53. Bhattacharya I, Boje KM. Feasibility of D-glucuronate to enhance gamma-hydroxybutyric acid metabolism during gamma-hydroxybutyric acid toxicity: pharmacokinetic and pharmacodynamic studies. Biopharm Drug Dispos. 2007;28(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  54. Knerr I, Pearl PL, Bottiglieri T, Snead OC, Jakobs C, Gibson KM. Therapeutic concepts in succinate semialdehyde dehydrogenase (SSADH; ALDH5a1) deficiency (gamma-hydroxybutyric aciduria). Hypotheses evolved from 25 years of patient evaluation, studies in Aldh5a1-/- mice and characterization of gamma-hydroxybutyric acid pharmacology. J Inherit Metab Dis. 2007;30(3):279–94.

    Article  CAS  PubMed  Google Scholar 

  55. Gibson KM, Nyhan WL. Metabolism of [U-14C]-4-hydroxybutyric acid to intermediates of the tricarboxylic acid cycle in extracts of rat liver and kidney mitochondria. Eur J Drug Metab Pharmacokinet. 1989;14(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  56. Pearl PL, Gibson KM, Cortez MA, Wu Y, Carter Snead O 3rd, Knerr I, et al. Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men. J Inherit Metab Dis. 2009;32(3):343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hechler V, Ratomponirina C, Maitre M. Gamma-hydroxybutyrate conversion into GABA induces displacement of GABAB binding that is blocked by valproate and ethosuximide. J Pharmacol Exp Ther. 1997;281(2):753–60.

    CAS  PubMed  Google Scholar 

  58. Snead OC 3rd, Bearden LJ, Pegram V. Effect of acute and chronic anticonvulsant administration on endogenous gamma-hydroxybutyrate in rat brain. Neuropharmacology. 1980;19(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  59. Brown GK, Cromby CH, Manning NJ, Pollitt RJ. Urinary organic acids in succinic semialdehyde dehydrogenase deficiency: evidence of alpha-oxidation of 4-hydroxybutyric acid, interaction of succinic semialdehyde with pyruvate dehydrogenase and possible secondary inhibition of mitochondrial beta-oxidation. J Inherit Metab Dis. 1987;10(4):367–75.

    Article  CAS  PubMed  Google Scholar 

  60. Lee CR. Evidence for the beta-oxidation of orally administered 4-hydroxybutyrate in humans. Biochem Med. 1977;17(3):284–91.

    Article  CAS  PubMed  Google Scholar 

  61. Gibson KM, Goodman SI, Frerman FE, Glasgow AM. Succinic semialdehyde dehydrogenase deficiency associated with combined 4-hydroxybutyric and dicarboxylic acidurias: potential for clinical misdiagnosis based on urinary organic acid profiling. J Pediatr. 1989;114(4 Pt 1):607–10.

    Article  CAS  PubMed  Google Scholar 

  62. O'Connor T, Ireland LS, Harrison DJ, Hayes JD. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem J. 1999;343(Pt 2):487–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J. 2008;10(2):311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roiko SA, Vijay N, Felmlee MA, Morris ME. Brain extracellular gamma-hydroxybutyrate concentrations are decreased by L-lactate in rats: role in the treatment of overdoses. Pharm Res. 2013;30(5):1338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhattacharya I, Boje KM. GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood-brain barrier. J Pharmacol Exp Ther. 2004;311(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  66. Felmlee MA, Morse BL, Follman KE, Morris ME. The drug of abuse gamma-hydroxybutyric acid exhibits tissue-specific nonlinear distribution. AAPS J. 2017;20(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Morse BL, Vijay N, Morris ME. Mechanistic modeling of monocarboxylate transporter-mediated toxicokinetic/toxicodynamic interactions between gamma-hydroxybutyrate and L- lactate. AAPS J. 2014;16(4):756–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wood DM, Greene SL, Dargan PI. Five-year trends in self-reported recreational drugs associated with presentation to a UK emergency department with suspected drug-related toxicity. Eur J Emerg Med : official journal of the European Society for Emergency Medicine. 2013;20(4):263–7.

    Article  Google Scholar 

  69. Jackson VN, Halestrap AP. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem. 1996;271(2):861–8.

    Article  CAS  PubMed  Google Scholar 

  70. Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME. Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease. Pharmacol Rev. 2020;72(2):466–85.

    Article  CAS  PubMed  Google Scholar 

  71. Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC transporters: expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J. 2017;19:1317–31.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang Q, Darling IM, Morris ME. Transport of gamma-hydroxybutyrate in rat kidney membrane vesicles: role of monocarboxylate transporters. J Pharmacol Exp Ther. 2006;318(2):751–61.

    Article  CAS  PubMed  Google Scholar 

  73. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Phys. 1997;273(1 Pt 1):E207–13.

    CAS  Google Scholar 

  74. Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des. 2013;20:1487–98.

    Article  Google Scholar 

  75. Otsuka Y, Furihata T, Nakagawa K, Ohno Y, Reien Y, Ouchi M, et al. Sodium-coupled monocarboxylate transporter 1 interacts with the RING finger- and PDZ domain-containing protein PDZRN3. J Physiol Sci. 2019;69(4):635–42.

    Article  CAS  PubMed  Google Scholar 

  76. Gopal E, Miyauchi S, Martin PM, Ananth S, Roon P, Smith SB, et al. Transport of nicotinate and structurally related compounds by human SMCT1 (SLC5A8) and its relevance to drug transport in the mammalian intestinal tract. Pharm Res. 2007;24(3):575–84.

    Article  CAS  PubMed  Google Scholar 

  77. Martin PM, Dun Y, Mysona B, Ananth S, Roon P, Smith SB, et al. Expression of the sodium-coupled monocarboxylate transporters SMCT1 (SLC5A8) and SMCT2 (SLC5A12) in retina. Invest Ophthalmol Vis Sci. 2007;48(7):3356–63.

    Article  PubMed  Google Scholar 

  78. Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, et al. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain. J Neurochem. 2006;98(1):279–88.

    Article  CAS  PubMed  Google Scholar 

  79. Gopal E, Fei YJ, Sugawara M, Miyauchi S, Zhuang L, Martin P, et al. Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. J Biol Chem. 2004;279(43):44522–32.

    Article  CAS  PubMed  Google Scholar 

  80. Rodriguez AM, Perron B, Lacroix L, Caillou B, Leblanc G, Schlumberger M, et al. Identification and characterization of a putative human iodide transporter located at the apical membrane of thyrocytes. J Clin Endocrinol Metab. 2002;87(7):3500–3.

    Article  CAS  PubMed  Google Scholar 

  81. Iwanaga T, Kishimoto A. Cellular distributions of monocarboxylate transporters: a review. Biomed Res. 2015;36(5):279–301.

    Article  CAS  PubMed  Google Scholar 

  82. Barac-Nieto M, Murer H, Kinne R. Lactate-sodium cotransport in rat renal brush border membranes. Am J Phys. 1980;239(5):F496–506.

    CAS  Google Scholar 

  83. Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, et al. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 2008;10(1):193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cui D, Morris ME. The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition. Drug Metab Dispos. 2009;37(7):1404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang Q, Lu Y, Morris ME. Monocarboxylate transporter (MCT) mediates the transport of gamma-hydroxybutyrate in human kidney HK-2 cells. Pharm Res. 2007;24(6):1067–78.

    Article  CAS  PubMed  Google Scholar 

  86. Lam WK, Felmlee MA, Morris ME. Monocarboxylate transporter-mediated transport of gamma-hydroxybutyric acid in human intestinal Caco-2 cells. Drug Metab Dispos. 2010;38(3):441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Morse BL, Felmlee MA, Morris ME. Gamma-hydroxybutyrate blood/plasma partitioning: effect of physiologic pH on transport by monocarboxylate transporters. Drug Metab Dispos. 2012;40(1):64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith JP, Drewes LR. Modulation of monocarboxylic acid transporter-1 kinetic function by the cAMP signaling pathway in rat brain endothelial cells. J Biol Chem. 2006;281(4):2053–60.

    Article  CAS  PubMed  Google Scholar 

  89. Carl SM, Lindley DJ, Das D, Couraud PO, Weksler BB, Romero I, et al. ABC and SLC transporter expression and proton oligopeptide transporter (POT) mediated permeation across the human blood--brain barrier cell line, hCMEC/D3 [corrected]. Mol Pharm. 2010;7(4):1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roiko SA, Felmlee MA, Morris ME. Brain uptake of the drug of abuse gamma-hydroxybutyric acid in rats. Drug Metab Dispos. 2012;40(1):212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Scharf MB, Lai AA, Branigan B, Stover R, Berkowitz DB. Pharmacokinetics of gammahydroxybutyrate (GHB) in narcoleptic patients. Sleep. 1998;21(5):507–14.

    Article  CAS  PubMed  Google Scholar 

  92. Palatini P, Tedeschi L, Frison G, Padrini R, Zordan R, Orlando R, et al. Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers. Eur J Clin Pharmacol. 1993;45(4):353–6.

    Article  CAS  PubMed  Google Scholar 

  93. Ferrara SD, Zotti S, Tedeschi L, Frison G, Castagna F, Gallimberti L, et al. Pharmacokinetics of gamma-hydroxybutyric acid in alcohol dependent patients after single and repeated oral doses. Br J Clin Pharmacol. 1992;34(3):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morris ME, Hu K, Wang Q. Renal clearance of gamma-hydroxybutyric acid in rats: increasing renal elimination as a detoxification strategy. J Pharmacol Exp Ther. 2005;313(3):1194–202.

    Article  CAS  PubMed  Google Scholar 

  95. Vijay N, Morse BL, Morris ME. A novel monocarboxylate transporter inhibitor as a potential treatment strategy for gamma-hydroxybutyric acid overdose. Pharm Res. 2015;32(6):1894–906.

    Article  CAS  PubMed  Google Scholar 

  96. Lettieri JT, Fung HL. Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat. J Pharmacol Exp Ther. 1979;208(1):7–11.

    CAS  PubMed  Google Scholar 

  97. Arena C, Fung HL. Absorption of sodium gamma-hydroxybutyrate and its prodrug gamma-butyrolactone: relationship between in vitro transport and in vivo absorption. J Pharm Sci. 1980;69(3):356–8.

    Article  CAS  PubMed  Google Scholar 

  98. Morse BL, Morris ME. Effects of monocarboxylate transporter inhibition on the oral toxicokinetics/toxicodynamics of gamma-hydroxybutyrate and gamma-butyrolactone. J Pharmacol Exp Ther. 2013;345(1):102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morris ME, Morse BL, Baciewicz GJ, Tessena MM, Acquisto NM, Hutchinson DJ, et al. Monocarboxylate transporter inhibition with osmotic diuresis increases gamma-hydroxybutyrate renal elimination in humans: a proof-of-concept study. J Clin Toxicol. 2011;1(2):1000105.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Docherty JR, Green AR. The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its derivatives. Br J Pharmacol. 2010;160(5):1029–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Felmlee MA, Roiko SA, Morse BL, Morris ME. Concentration-effect relationships for the drug of abuse gamma-hydroxybutyric acid. J Pharmacol Exp Ther. 2010;333(3):764–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. FDA Xyrem Label 2020 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021196s033s034lbl.pdf. Accessed Sept 2020

  103. Felmlee MA, Wang Q, Cui D, Roiko SA, Morris ME. Mechanistic toxicokinetic model for gamma-hydroxybutyric acid: inhibition of active renal reabsorption as a potential therapeutic strategy. AAPS J. 2010;12(3):407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang Q, Morris ME. Flavonoids modulate monocarboxylate transporter-1-mediated transport of gamma-hydroxybutyrate in vitro and in vivo. Drug Metab Dispos. 2007;35(2):201–8.

    Article  CAS  PubMed  Google Scholar 

  105. Raybon JJ, Boje KM. Pharmacokinetics and pharmacodynamics of gamma-hydroxybutyric acid during tolerance in rats: effects on extracellular dopamine. J Pharmacol Exp Ther. 2007;320(3):1252–60.

    Article  CAS  PubMed  Google Scholar 

  106. Lettieri J, Fung HL. Absorption and first-pass metabolism of 14C-gamma-hydroxybutyric acid. Res Commun Chem Pathol Pharmacol. 1976;13(3):425–37.

    CAS  PubMed  Google Scholar 

  107. Wang Q, Wang X, Morris ME. Effects of L-lactate and D-mannitol on gamma-hydroxybutyrate toxicokinetics and toxicodynamics in rats. Drug Metab Dispos. 2008;36(11):2244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Giarman NJ, Roth RH. Differential estimation of gamma-butyrolactone and gamma-hydroxybutyric acid in rat blood and brain. Science. 1964;145(3632):583–4.

    Article  CAS  PubMed  Google Scholar 

  109. Lettieri J, Fung HL. Improved pharmacological activity via pro-drug modification: comparative pharmacokinetics of sodium gamma-hydroxybutyrate and gamma-butyrolactone. Res Commun Chem Pathol Pharmacol. 1978;22(1):107–18.

    CAS  PubMed  Google Scholar 

  110. Carter LP, Koek W, France CP. Lack of effects of GHB precursors GBL and 1,4-BD following i.c.v. administration in rats. Eur J Neurosci. 2006;24(9):2595–600.

    Article  PubMed  Google Scholar 

  111. Fung HL, Tsou PS, Bulitta JB, Tran DC, Page NA, Soda D, et al. Pharmacokinetics of 1,4-butanediol in rats: bioactivation to gamma-hydroxybutyric acid, interaction with ethanol, and oral bioavailability. AAPS J. 2008;10(1):56–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goodwin AK, Brown PR, Jansen EE, Jakobs C, Gibson KM, Weerts EM. Behavioral effects and pharmacokinetics of gamma-hydroxybutyrate (GHB) precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) in baboons. Psychopharmacology. 2009;204(3):465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thai D, Dyer JE, Benowitz NL, Haller CA. Gamma-hydroxybutyrate and ethanol effects and interactions in humans. J Clin Psychopharmacol. 2006;26(5):524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Okun MS, Boothby LA, Bartfield RB, Doering PL. GHB: an important pharmacologic and clinical update. J Pharm Pharm Sci : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2001;4(2):167–75.

    CAS  Google Scholar 

  115. Mason PE, Kerns WP 2nd. Gamma hydroxybutyric acid (GHB) intoxication. Acad Emerg Med Off J Soc Acad Emerg Med. 2002;9(7):730–9.

    Article  Google Scholar 

  116. Bania TC, Chu J. Physostigmine does not effect arousal but produces toxicity in an animal model of severe gamma-hydroxybutyrate intoxication. Acad Emerg Med Off J Soc Acad Emerg Med. 2005;12(3):185–9.

    Article  Google Scholar 

  117. Zvosec DL, Smith SW, Porrata T, Strobl AQ, Dyer JE. Case series of 226 gamma-hydroxybutyrate-associated deaths: lethal toxicity and trauma. Am J Emerg Med. 2011;29(3):319–32.

    Article  PubMed  Google Scholar 

  118. Berling I, Whyte IM, Isbister GK. Oxycodone overdose causes naloxone responsive coma and QT prolongation. QJM. 2013;106(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  119. Fox LM, Hoffman RS, Vlahov D, Manini AF. Risk factors for severe respiratory depression from prescription opioid overdose. Addiction. 2018;113(1):59–66.

    Article  PubMed  Google Scholar 

  120. Marinetti LJ, Ehlers BJ. A series of forensic toxicology and drug seizure cases involving illicit fentanyl alone and in combination with heroin, cocaine or heroin and cocaine. J Anal Toxicol. 2014;38(8):592–8.

    Article  CAS  PubMed  Google Scholar 

  121. Pahlman C, Qi Z, Murray CM, Ferguson D, Bundick RV, Donald DK, et al. Immunosuppressive properties of a series of novel inhibitors of the monocarboxylate transporter MCT-1. Transpl Int. 2013;26(1):22–9.

    Article  PubMed  Google Scholar 

  122. Curtis NJ, Mooney L, Hopcroft L, Michopoulos F, Whalley N, Zhong H, et al. Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity. Oncotarget. 2017;8(41):69219–36.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. Biochem J. 2010;425(3):523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bola BM, Chadwick AL, Michopoulos F, Blount KG, Telfer BA, Williams KJ, et al. Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 2014;13(12):2805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Follman KE, Morris ME. Treatment of gamma-hydroxybutyric acid and gamma-butyrolactone overdose with two potent monocarboxylate transporter 1 inhibitors, AZD3965 and AR-C155858. J Pharmacol Exp Ther. 2019;370(1):84–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lobina C, Agabio R, Reali R, Gessa GL, Colombo G. Contribution of GABA(A) and GABA(B) receptors to the discriminative stimulus produced by gamma-hydroxybutyric acid. Pharmacol Biochem Behav. 1999;64(2):363–5.

    Article  CAS  PubMed  Google Scholar 

  127. Baker LE, Van Tilburg TJ, Brandt AE, Poling A. Discriminative stimulus effects of gamma-hydroxybutyrate (GHB) and its metabolic precursor, gamma-butyrolactone (GBL) in rats. Psychopharmacology. 2005;181(3):458–66.

    Article  CAS  PubMed  Google Scholar 

  128. Baker LE, Searcy GD, Pynnonen DM, Poling A. Differentiating the discriminative stimulus effects of gamma-hydroxybutyrate and ethanol in a three-choice drug discrimination procedure in rats. Pharmacol Biochem Behav. 2008;89(4):598–607.

    Article  CAS  PubMed  Google Scholar 

  129. Lobina C, Colombo G, Gessa GL, Carai MA. Different sensitivity to the motor incoordinating effects of gamma-hydroxybutyric acid (GHB) and baclofen in GHB-sensitive and GHB-resistant rats. Brain Res. 2005;1033(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  130. Carai MA, Quang LS, Atzeri S, Lobina C, Maccioni P, Orru A, et al. Withdrawal syndrome from gamma-hydroxybutyric acid (GHB) and 1,4-butanediol (1,4-BD) in Sardinian alcohol-preferring rats. Brain Res Brain Res Protoc. 2005;15(2):75–8.

    Article  CAS  PubMed  Google Scholar 

  131. Quang LS, Colombo G, Lobina C, Maccioni P, Orru A, Gessa GL, et al. Evaluation for the withdrawal syndrome from gamma-hydroxybutyric acid (GHB), gamma-butyrolactone (GBL), and 1,4-butanediol (1,4-BD) in different rat lines. Ann N Y Acad Sci. 2006;1074:545–58.

    Article  CAS  PubMed  Google Scholar 

  132. Goodwin AK, Gibson KM, Weerts EM. Physical dependence on gamma-hydroxybutrate (GHB) prodrug 1,4-butanediol (1,4-BD): time course and severity of withdrawal in baboons. Drug Alcohol Depend. 2013;132(3):427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Goodwin AK, Kaminski BJ, Weerts EM. Self-administration of gamma-hydroxybutyric acid (GHB) precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) in baboons. Psychopharmacology. 2013;225(3):637–46.

    Article  CAS  PubMed  Google Scholar 

  134. Weerts EM, Goodwin AK, Griffiths RR, Brown PR, Froestl W, Jakobs C, et al. Spontaneous and precipitated withdrawal after chronic intragastric administration of gamma-hydroxybutyrate (GHB) in baboons. Psychopharmacology. 2005;179(3):678–87.

    Article  CAS  PubMed  Google Scholar 

  135. Brunt TM, van Amsterdam JG, van den Brink W. GHB, GBL and 1,4-BD addiction. Curr Pharm Des. 2014;20(25):4076–85.

    Article  CAS  PubMed  Google Scholar 

  136. McDonough M, Kennedy N, Glasper A, Bearn J. Clinical features and management of gamma-hydroxybutyrate (GHB) withdrawal: a review. Drug Alcohol Depend. 2004;75(1):3–9.

  137. van Noorden MS, Mol T, Wisselink J, Kuijpers W, Dijkstra BAG. Treatment consumption and treatment re-enrollment in GHB-dependent patients in The Netherlands. Drug Alcohol Depend. 2017;176:96–101.

    Article  PubMed  Google Scholar 

Download references

Funding

The studies from the Morris laboratory were supported in part by NIH grant R01DA023223. MAF is supported in part by NIH grant SC1 DA-052150.

Author information

Authors and Affiliations

Authors

Contributions

Marilyn E. Morris, Ph.D. FAAPS, FAAAS, FFIP

Her current position is SUNY Distinguished Professor and Chair of the Department of Pharmaceutical Sciences at the University at Buffalo. She had the privilege of being a graduate student with Dr. Gerhard Levy and a postdoctoral fellow with Dr. K. Sandy Pang, joining the Department of Pharmaceutical Sciences at the University at Buffalo in 1985 as their first woman faculty member. It has been her privilege to have very talented graduate students and postdoctoral fellows in her laboratory over the years, including the two co-authors of this review. Both have continued to contribute significantly in the drug transporter field with research, publications, presentations, and contributions to national/international scientific societies.

Melanie A. Felmlee, Ph.D.

Melanie was a graduate student and postdoctoral fellow in the Morris laboratory graduating with her PhD in 2010 and having an appointment as Research Assistant Professor in the Department of Pharmaceutical sciences from 2013 to 2015. She is currently an Assistant Professor in the Thomas J. Long School of Pharmacy, University of the Pacific. During her time in the Morris laboratory, as well as after leaving, we published 11 manuscripts, most recently a review on monocarboxylate transporters published in 2020. While a graduate student in the Department of Pharmaceutical Science, she was recognized with a Graduate Student Teaching award (2007) and the UB Pharmaceutics Graduate Scholar Award (2010). She received conference travel awards for AAPS and ASPET and was a 2010 recipient of the AAPS Graduate Symposium in Pharmacokinetics, Pharmacodynamics, and Drug Metabolism. In 2017, she was recognized with an AACP New Investigator Award. She is currently the chair of the AAPS Drug Transporter Community.

Bridget L. Morse, Pharm.D., Ph.D.

Bridget was a graduate student in the Morris laboratory, graduating in 2013. Her current position is Principal Research Scientist, Eli Lilly and Company. During her time in Morris laboratory, she published 11 manuscripts; additionally, we published a chapter on Membrane Drug Transporters in both the 7th and 8th editions of the textbook Foye’s Principles of Medicinal Chemistry. Bridget’s research accomplishments during her graduate program were recognized by an AAPS Graduate Student Research Symposium Award (2012) in Pharmacokinetics, Pharmacodynamics, and Drug Metabolism (PPDM) and Clinical Pharmacology and Translational Research (CPTR), Presidential Symposium Speaker for the ASPET-Upstate New York Pharmacology Association meeting in May 2012 and UB Department of Pharmaceutical Sciences Graduate Student Award in 2012. She is currently Chair Elect of the AAPS Drug Transporter Community.

Corresponding author

Correspondence to Marilyn E. Morris.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Diane Burgess, Marilyn Morris, and Meena Subramanyam

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felmlee, M.A., Morse, B.L. & Morris, M.E. γ-Hydroxybutyric Acid: Pharmacokinetics, Pharmacodynamics, and Toxicology. AAPS J 23, 22 (2021). https://doi.org/10.1208/s12248-020-00543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00543-z

Key Words

Navigation