Skip to main content

Advertisement

Log in

A Promising Antibacterial Wound Dressing Made of Electrospun Poly (Glycerol Sebacate) (PGS)/Gelatin with Local Delivery of Ascorbic Acid and Pantothenic Acid

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Skin wounds can lead to numerous problems with dangerous health consequences. One of the best treatments for chronic wounds is using novel wound dressings containing drugs and vitamins to improve healing. In this study, Poly (Glycerol Sebacate) (PGS)/Gelatin wound dressing, containing vitamin B5 and vitamin C, was fabricated by electrospinning. In addition, the fabricated dressing’s structure, physical properties, drug release, antibacterial activity, and cytotoxicity were evaluated. Results revealed that the diameter of the fibers PGS-G/VitB5 was 603.155 ± 12.09 nm. Furthermore, the degradation results showed that about 20% of cross-linked PGS-G/Vit B5/Vit C was degraded during 14 days but could maintain its stability well. The water absorption and contact angle of cross-linked PGS-G/Vit B5/Vit C were 605% and 52°, respectively. Moreover, the vitamins C and B5 releases demonstrated the burst release during 1 and 6 h, respectively. Antibacterial results also demonstrated that vitamin B5 in PGS/gelatin wound dressing could prevent gram-negative and gram-positive bacteria growth. According to the cell viability assay, vitamin C enhanced cell adhesion and cell proliferation. Finally, a suitable wound healing product was recommended with the PGS/gelatin with vitamin C/vitamin B5 wound dressing with ideal biological properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Summerfield A, Meurens F, Ricklin ME (2015) The immunology of the porcine skin and its value as a model for human skin. Mol Immunol 66(1):14–21

    Article  CAS  PubMed  Google Scholar 

  2. Minutti CM, Knipper JA, Allen JE, Zaiss DMW (2017) Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol 61:3–11. https://doi.org/10.1016/j.semcdb.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  3. Young A (2017) The physiology of wound healing. Surgery 35(9):473–7. https://doi.org/10.1016/j.mpsur.2017.06.004

    Article  Google Scholar 

  4. Park JW, Hwang SR, Yoon IS (2017) Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 22(8):1–20

    Article  Google Scholar 

  5. Bari E, Perteghella S, Faragò S, Torre ML (2018) Association of silk sericin and platelet lysate: premises for the formulation of wound healing active medications. Int J Biol Macromol 119:37–47

    Article  CAS  PubMed  Google Scholar 

  6. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB (2019) Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 146:97–125. https://doi.org/10.1016/j.addr.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  7. Hassan MA, Tamer TM, Valachová K, Omer AM, El-Shafeey M, Mohy Eldin MS et al (2020) Antioxidant and antibacterial polyelectrolyte wound dressing based on chitosan/hyaluronan/phosphatidylcholine dihydroquercetin. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.11.119

    Article  PubMed  Google Scholar 

  8. Li W, Wang B, Zhang M, Wu Z, Wei J, Jiang Y et al (2020) All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing. Cellulose. 27(5):2637–50. https://doi.org/10.1007/s10570-019-02942-8

    Article  CAS  Google Scholar 

  9. Sehgal PK, Sripriya R, Senthilkumar M, Rajendran S (2019) Drug delivery dressings. Advanced Textiles for Wound Care, 2nd edn. Elsevier, Amsterdam, pp 261–288. https://doi.org/10.1016/B978-0-08-102192-7.00009-6

    Chapter  Google Scholar 

  10. Fahimirad S, Ajalloueian F (2019) Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int J Pharm 566(May):307–28. https://doi.org/10.1016/j.ijpharm.2019.05.053

    Article  CAS  PubMed  Google Scholar 

  11. Augustine R, Dan P, Schlachet I, Rouxel D, Menu P, Sosnik A (2019) Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly (epsilon-caprolactone) membranes. Int J Pharm 559(February):420–6. https://doi.org/10.1016/j.ijpharm.2019.01.063

    Article  CAS  PubMed  Google Scholar 

  12. Lv H, Zhao M, Li Y, Li K, Chen S, Zhao W et al (2022) Electrospun chitosan – polyvinyl alcohol nanofiber dressings loaded with bioactive ursolic acid promoting diabetic wound healing. Nanomaterials. 12:1–17

    Article  Google Scholar 

  13. Elsayed RE, Madkour TM, Azzam RA (2020) Tailored design of electrospun nanofiber cellulose acetate/poly(lactic acid) dressing mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing. Int J Biol Macromol 164:1984–99. https://doi.org/10.1016/j.ijbiomac.2020.07.316

    Article  CAS  PubMed  Google Scholar 

  14. Rai R, Tallawi M, Grigore A, Boccaccini AR (2012) Synthesis, properties and biomedical applications of poly (glycerol sebacate) (PGS): a review. Prog Polym Sci 37:1051–78

    Article  CAS  Google Scholar 

  15. Fakhrali A, Semnani D, Salehi H, Ghane M (2020) Electrospun PGS/PCL nanofibers: from straight to sponge and spring-like morphology. Polym Adv Technol 31(12):3134–3149

    Article  CAS  Google Scholar 

  16. Zhang X, Jia C, Qiao X, Liu T, Sun K (2016) Porous poly (glycerol sebacate) (PGS) elastomer scaffolds for skin tissue engineering. Polym Test 54:118–25. https://doi.org/10.1016/j.polymertesting.2016.07.006

    Article  CAS  Google Scholar 

  17. Rai R, Tallawi M, Grigore A, Boccaccini AR (2012) Progress in Polymer Science Synthesis, properties and biomedical applications of poly (glycerol sebacate) (PGS): a review. Prog Polym Sci 37(8):1051–78. https://doi.org/10.1016/j.progpolymsci.2012.02.001

    Article  CAS  Google Scholar 

  18. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–21. https://doi.org/10.1016/j.polymer.2008.09.014

    Article  CAS  Google Scholar 

  19. Ye H, Cheng J, Yu K (2019) In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol 121:633–42. https://doi.org/10.1016/j.ijbiomac.2018.10.056

    Article  CAS  PubMed  Google Scholar 

  20. Jridi M, Sellimi S, Ben K, Beltaief S, Souissi N, Mora L et al (2017) Wound healing activity of cuttlefish gelatin gels and films enriched by henna (Lawsonia inermis) extract. Colloids Surf A 512:71–9. https://doi.org/10.1016/j.colsurfa.2016.10.014

    Article  CAS  Google Scholar 

  21. Khamrai M, Lal S, Paul S, Samanta S, Paban P (2019) Curcumin entrapped gelatin/ionically modified bacterial cellulose-based self-healable hydrogel film : an eco-friendly sustainable synthesis method of wound healing patch. Int J Biol Macromol 122:940–953. https://doi.org/10.1016/j.ijbiomac.2018.10.196

    Article  CAS  PubMed  Google Scholar 

  22. Cam ME, Crabbe-Mann M, Alenezi H, Hazar-Yavuz AN, Ertas B, Ekentok C et al (2020) The comparison of glibenclamide and metformin-loaded bacterial cellulose/gelatin nanofibres produced by a portable electrohydrodynamic gun for diabetic wound healing. Eur Polym J 134(March):109844. https://doi.org/10.1016/j.eurpolymj.2020.109844

    Article  CAS  Google Scholar 

  23. Aavani F, Khorshidi S, Karkhaneh A (2019) A concise review on drug-loaded electrospun nanofibres as promising wound dressings. J Med Eng Technol. https://doi.org/10.1080/03091902.2019.1606950

    Article  PubMed  Google Scholar 

  24. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E et al (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voss GT, Gularte MS, Vogt AG, Giongo JL, Vaucher RA, Echenique JVZ et al (2018) Polysaccharide-based film loaded with vitamin C and propolis: a promising device to accelerate diabetic wound healing. Int J Pharm 552(1–2):340–51. https://doi.org/10.1016/j.ijpharm.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  26. Jagetia GC, Rajanikant GK, Mallikarjun Rao KVN (2007) Ascorbic acid increases the healing of excision wounds of mice whole body exposed to different doses of γ-radiation. Burns 33(4):484–494

    Article  PubMed  Google Scholar 

  27. Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d’Ayala G (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym. 233(January):115839. https://www.sciencedirect.com/science/article/pii/S0144861720300138

  28. Ahlawat J, Kumar V, Gopinath P (2019) Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing. Mater Sci Eng C 103:109834. https://doi.org/10.1016/j.msec.2019.109834

    Article  CAS  Google Scholar 

  29. Rembe JD, Fromm-Dornieden C, Stuermer EK (2018) Effects of vitamin B complex and vitamin C on human skin cells: is the perceived effect measurable? Adv Skin Wound Care 31(5):225–233

    Article  PubMed  Google Scholar 

  30. Srivastava M, Singh NP, Yadav RA (2014) Experimental Raman and IR spectral and theoretical studies of the vibrational spectrum and molecular structure of Pantothenic acid (vitamin B 5). Spectrochim ACTA PART 129:131–42. https://doi.org/10.1016/j.saa.2014.02.121

    Article  CAS  Google Scholar 

  31. Ermutlu CS, Erkilic EE, Kilic E, Kirmizigul AH, Dag S, Ogun M et al (2018) Effect of dexpanthenol on colonic anastomosis healing in rats. Med Weter 74(11):702–707

    Google Scholar 

  32. Chantereau G, Sharma M, Abednejad A, Vilela C, Costa EM, Veiga M et al (2020) Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J Mol Liq 302:112547. https://doi.org/10.1016/j.molliq.2020.112547

    Article  CAS  Google Scholar 

  33. Bhutto MA, Wu T, Sun B, Ei-hamshary H, Al-deyab SS, Mo X (2016) Fabrication and characterization of vitamin B5 loaded poly (l -lactide-co-caprolactone )/silk fiber aligned electrospun nanofibers for Schwann cell proliferation. Colloids Surf B 144:108–17. https://doi.org/10.1016/j.colsurfb.2016.04.013

    Article  CAS  Google Scholar 

  34. Proksch E, de Bony R, Trapp S, Boudon S (2017) Topical use of dexpanthenol: a 70th anniversary article. J Dermatolog Treat 28(8):766–773

    Article  CAS  PubMed  Google Scholar 

  35. Fan L, Cai Z, Zhang K, Han F, Li J, He C et al (2014) Green electrospun pantothenic acid/silk fibroin composite nanofibers : fabrication, characterization and biological activity. Colloids Surf B 117:14–20. https://doi.org/10.1016/j.colsurfb.2013.12.030

    Article  CAS  Google Scholar 

  36. Kobayashi D, Kusama M, Onda M, Nakahata N (2011) The Effect of Pantothenic Acid Deficiency on Keratinocyte Proliferation and the Synthesis of Keratinocyte Growth Factor and Collagen in Fibroblasts. J Pharmacol Sci 234:230–234

    Article  Google Scholar 

  37. Atari M, Mohammadalizadeh Z, Zargar Kharazi A, Haghjooy JS (2022) The effect of different solvent systems on physical properties of electrospun poly(glycerol sebacate)/poly(ɛ-caprolactone) blend. Polym Technol Mater 61(7):789–802

    CAS  Google Scholar 

  38. Yoon S, Chen B (2018) Elastomeric and pH-responsive hydrogels based on direct crosslinking of the poly(glycerol sebacate) pre-polymer and gelatin. Polym Chem 9(27):3727–3740

    Article  CAS  Google Scholar 

  39. Campiglio CE, Negrini NC, Farè S, Draghi L (2019) Cross-linking strategies for electrospun gelatin scaffolds. Materials 12(15):2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campiglio CE, Ponzini S, De Stefano P, Ortoleva G, Vignati L, Draghi L (2020) Cross-linking optimization for electrospun gelatin: challenge of preserving fiber topography. Polymers 12(11):1–15

    Article  Google Scholar 

  41. Ghassemi Z, Slaughter G (2018) Storage stability of electrospun pure gelatin stabilized with EDC/Sulfo-NHS. Biopolymers 109(9):1–12

    Article  Google Scholar 

  42. Shi H, Gan Q, Liu X, Ma Y, Hu J, Yuan Y et al (2015) Poly(glycerol sebacate)-modified polylactic acid scaffolds with improved hydrophilicity, mechanical strength, and bioactivity for bone tissue regeneration. RSC Adv 5(97):79703–14. https://doi.org/10.1039/C5RA13334C

    Article  CAS  Google Scholar 

  43. Saravani S, Ebrahimian-Hosseinabadi M, Mohebbi-Kalhori D (2019) Polyglycerol sebacate/chitosan/gelatin nano-composite scaffolds for engineering neural construct. Mater Chem Phys 222:147–151

    Article  CAS  Google Scholar 

  44. Luginina M, Schuhladen K, Orrú R, Cao G, Boccaccini AR, Liverani L (2020) Electrospun PCL/PGS composite fibers incorporating bioactive glass particles for soft tissue engineering applications. Nanomaterials 10(5):978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salehi M, Niyakan M, Ehterami A, Haghi-Daredeh S, Nazarnezhad S, Abbaszadeh-Goudarzi G et al (2020) Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study. Biomed Eng Lett 10(1):149–61. https://doi.org/10.1007/s13534-019-00138-4

    Article  PubMed  Google Scholar 

  46. Jamili S, Sadeghi H, Rezayat M, Attar H, Kaymaram F (2019) Extraction and evaluation of gelatin from yellowfin tuna (Thunnus albacares) skin and prospect as an alternative to mammalian gelatin. Iran J Fish Sci 18(4):903–14

    Google Scholar 

  47. Bazmandeh AZ, Mirzaei E, Fadaie M, Shirian S, Ghasemi Y (2020) Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: in-vitro and in-vivo studies. Int J Biol Macromol 162:359–73. https://doi.org/10.1016/j.ijbiomac.2020.06.181

    Article  CAS  PubMed  Google Scholar 

  48. Das MP, Suguna PR, Prasad K, Jv V, Renuka M (2017) Extraction and Characterization of Gelatin: a Functional Biopolymer. Int J Pharm Pharm Sci. 9(9):239

    Article  CAS  Google Scholar 

  49. Zahiri M, Khanmohammadi M, Goodarzi A, Ababzadeh S, Sagharjoghi Farahani M, Mohandesnezhad S et al (2020) Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Int J Biol Macromol 153:1241–50. https://doi.org/10.1016/j.ijbiomac.2019.10.255

    Article  CAS  PubMed  Google Scholar 

  50. Aghajan MH, Panahi-sarmad M, Alikarami N, Shojaei S, Saeidi A, Khonakdar HA et al (2020) Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.109720

    Article  Google Scholar 

  51. Kharaziha M, Nikkhah M, Shin S, Annabi N (2013) Biomaterials PGS : gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34:6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chantereau G, Sharma M, Abednejad A, Vilela C, Costa EM, Veiga M et al (2020) Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J Mol Liq 302:112547. https://doi.org/10.1016/j.molliq.2020.112547

    Article  CAS  Google Scholar 

  53. Sreeja V, Jayaprabha KN, Joy PA (2015) Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl Nanosci 5(4):435–441

    Article  CAS  Google Scholar 

  54. Wu XM, Branford-White CJ, Yu DG, Chatterton NP, Zhu LM (2011) Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surfaces B 82(1):247–52. https://doi.org/10.1016/j.colsurfb.2010.08.049

    Article  CAS  Google Scholar 

  55. George L, Bavya MC, Rohan KV, Srivastava R (2017) A therapeutic polyelectrolyte–vitamin C nanoparticulate system in polyvinyl alcohol–alginate hydrogel: an approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surfaces B 160:315–24. https://doi.org/10.1016/j.colsurfb.2017.09.030

    Article  CAS  Google Scholar 

  56. Othayoth R, Mathi P, Bheemanapally K, Kakarla L, Botlagunta M (2015) Characterization of vitamin-cisplatin-loaded chitosan nano-particles for chemoprevention and cancer fatigue. J Microencapsul 32(6):578–588

    Article  CAS  PubMed  Google Scholar 

  57. Avizheh L, Peirouvi T, Diba K, Fathi-Azarbayjani A (2019) Electrospun wound dressing as a promising tool for the therapeutic delivery of ascorbic acid and caffeine. Ther Deliv 10(12):757–767

    Article  CAS  PubMed  Google Scholar 

  58. Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H et al (2020) Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 10(1):1–12

    Article  Google Scholar 

  59. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–11. https://doi.org/10.1016/j.carbpol.2013.01.076

    Article  CAS  PubMed  Google Scholar 

  60. Ai C, Cai J, Zhu J, Zhou J, Jiang J, Chen S (2017) Effect of PET graft coated with silk fibroin: via EDC/NHS crosslink on graft-bone healing in ACL reconstruction. RSC Adv 7(81):51303–51312

    Article  CAS  Google Scholar 

  61. Lee IW, Li J, Chen X, Park HJ (2016) Electrospun poly (vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium D -pantothenate. J Appl Polym Sci 42900:1–11

    Google Scholar 

  62. Heydari P, Varshosaz J, Zargar Kharazi A, Karbasi S (2018) Preparation and evaluation of poly glycerol sebacate/poly hydroxybutyrate core-shell electrospun nanofibers with the sequential release of ciprofloxacin and simvastatin in wound dressings. Polym Adv Technol 29(6):1795–1803

    Article  CAS  Google Scholar 

  63. Herrmann I, Supriyanto E, Jaganathan SK, Manikandan A (2018) Advanced nanofibrous textile-based dressing material for treating. Bull Mater Sci. https://doi.org/10.1007/s12034-017-1543-5

    Article  Google Scholar 

  64. Wang J, Planz V, Vukosavljevic B, Windbergs M (2017) Multifunctional electrospun nanofibers for wound application – Novel insights into the control of drug release and antimicrobial activity. Eur J Pharm Biopharm [Internet]. 2018(129):175–83. https://doi.org/10.1016/j.ejpb.2018.05.035

    Article  CAS  Google Scholar 

  65. Tort S, Han D, Steckl AJ (2020) Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm [Internet]. 579:119164. https://doi.org/10.1016/j.ijpharm.2020.119164

    Article  CAS  PubMed  Google Scholar 

  66. Bhutto MA, Wu T, Sun B, EI-Hamshary H, Al-Deyab SS, Mo X. (2016) Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for Schwann cell proliferation. Colloids Surfaces B Biointerfaces. 144:108–117. https://doi.org/10.1016/j.colsurfb.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  67. Nadim A, Khorasani SN, Kharaziha M, Davoodi SM (2017) Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-polycaprolactone/gelatin scaffold by coaxial electrospinning for soft tissue engineering. In: Materials Science and Engineering C, vol. 78. Elsevier, p 47-58. http://dx.doi.org/https://doi.org/10.1016/j.msec.2017.04.047

  68. Zarandi MA, Zahedi P, Rezaeian I, Salehpour A, Gholami M, Motealleh B. Drug release, cell adhesion and wound healing evaluations of electrospun carboxymethyl chitosan/polyethylene oxide nanofibres containing phenytoin sodium and vitamin C. 2014;191–200.

Download references

Funding

The authors acknowledge the financial support of Isfahan University of Medical Sciences through Grant No. #397690.

Author information

Authors and Affiliations

Authors

Contributions

Paria Khaloohermani wrote a first draft of the manuscript. Anousheh Zargar Kharazi reviewed, edited and completed it. All tests and analyses of the results were done by the Paria Kermani, under the supervision of Anousheh Zargar Kharazi (corresponding author). All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Anousheh Zargar Kharazi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaloo Kermani, P., Zargar Kharazi, A. A Promising Antibacterial Wound Dressing Made of Electrospun Poly (Glycerol Sebacate) (PGS)/Gelatin with Local Delivery of Ascorbic Acid and Pantothenic Acid. J Polym Environ 31, 2504–2518 (2023). https://doi.org/10.1007/s10924-022-02715-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02715-8

Keywords

Navigation