Skip to main content
Log in

Galleria Mellonella Larvae as an Alternative to Low-Density Polyethylene and Polystyrene Biodegradation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The excessive plastics production and its inappropriate disposal contribute to unprecedented pollution. Galleria mellonella larvae were chosen as the object of this work, in order to evaluate its ability to biodegrade two types of plastics most common in everyday life: polystyrene (PS) and low-density polyethylene (LDPE). This research is one of the few that use PS and LDPE as the sole carbon sources in the diet of G. mellonella. We studied how contact with larvae affected both types of plastic, covering morphological, physicochemical and mass loss levels. In this particular work, twenty-five larvae were placed inside glass containers in direct contact with the plastics and incubated in the dark at 28 °C. The results showed that PS had greater biodegradation, indicating 56.12% mass loss, while LDPE was 5.11% degraded. After 7.25 days of testing, the larvae survival rate was 60% for PS and 82% for LDPE. The contact with the larvae changed the material wettability, being more noticeable on the PS surface. The formation of new chemical groups indicated the existence of biodegradation processes in the PS sample, but in LDPE no new bands were observed. After 7.25 days, we evaluated larval survival and pupal formation after contact with PS and LPDE, but no significant differences were observed between the groups. No significant difference on the survival and pupa formation of larvae exposed to both types of plastic was found. We conclude that G. mellonella larvae can be a cost-effective and promising alternative to biodegrade PS and LDPE pieces in plastic waste environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bilo F, Pandini S, Sartore L, Depero LE, Gargiulo G, Bonassi A, Federici S, Bontempi (2018) E a sustainable bioplastic obtained from rice straw. J Clean Prod 200:357–368. https://doi.org/10.1016/j.jclepro.2018.07.252

    Article  CAS  Google Scholar 

  3. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Pol J Environ Stud 19:255–266

    Google Scholar 

  4. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426. https://doi.org/10.1016/j.copbio.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  5. Hiraga K, Taniguchi I, Yoshida S, Kimura Y, Oda K (2019) Biodegradation of waste PET: a sustainable solution for dealing with plastic pollution. EMBO Rep 20:e49365. https://doi.org/10.15252/embr.201949365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar G, Anjana K, Hinduja M, Sujitha M, Dharani G (2020) Review on plastic wastes in marine environment – biodegradation and biotechnological solutions. Mar Pollut Bull 150:110733. https://doi.org/10.1016/j.marpolbul.2019.110733

    Article  CAS  Google Scholar 

  7. Kumar S, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3:462–473. https://doi.org/10.1016/j.jece.2015.01.003

    Article  CAS  Google Scholar 

  8. De la Torre G, Dioses D, Pizarro M, Saldaña M (2020) Global distribution of two polystyrene-derived contaminants in the marine environment: a review. Mar Pollut Bull 161:111729. https://doi.org/10.1016/j.marpolbul.2020.111729

    Article  CAS  PubMed  Google Scholar 

  9. Kwon B, Koizumi K, Chung S, Kodera Y, Kim J, Saido K (2015) Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J Hazard MateR 300:359–367. https://doi.org/10.1016/j.jhazmat.2015.07.039

    Article  CAS  PubMed  Google Scholar 

  10. Ruziwa D, Chaukura N, Gwenzi W, Pumure I (2015) Removal of zn 2 + and pb 2 + ions from aqueous solution using sulphonated waste polystyrene. J Environ Chem Eng 3:2528–2537. https://doi.org/10.1016/j.jece.2015.08.006

    Article  CAS  Google Scholar 

  11. Yang Y, Yang J, Wu W, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086. https://doi.org/10.1021/acs.est.5b02661

    Article  CAS  PubMed  Google Scholar 

  12. Farrelly T, Shaw I (2017) Polystyrene as Hazardous Household Waste, in: Househ. Hazard. Waste Manag, InTech, 45–60. https://doi.org/10.5772/65865

  13. Xu D, Ma Y, Han X, Chen Y (2021) Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into CaCO-2 cells. J Hazard Mater 417:126092. https://doi.org/10.1016/j.jhazmat.2021.126092

    Article  CAS  PubMed  Google Scholar 

  14. Luyt A, Malik S (2019) Can Biodegradable Plastics Solve Plastic Solid Waste Accumulation? Plast. To Energy. Elsevier, pp 403–423. https://doi.org/10.1016/B978-0-12-813140-4.00016-9.

  15. Yang S, Brandon A, Flanagan J, Yang J, Ning D, Cai S, Fan H, Wang Z, Ren J, Benbow E, Ren N, Waymouth R, Zhou J (2018) Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 19:979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117

    Article  CAS  Google Scholar 

  16. Kong H, Kim H, Chung J, Jun J, Lee S, Kim H, Jeon S, Park S, Bhak J, Ryu C (2019) The Galleria mellonella Hologenome supports microbiota-independent metabolism of Long-Chain Hydrocarbon Beeswax. Cell Rep 26:2451–2464. https://doi.org/10.1016/j.celrep.2019.02.018

    Article  CAS  PubMed  Google Scholar 

  17. Wu W, Criddle C (2021) Characterization of biodegradation of plastics in insect larvae. Methods Enzymol 95–120. https://doi.org/10.1016/bs.mie.2020.12.029

  18. Réjasse A, Waeytens J, Deniset-Besseau A, Crapart N, Nielsen-Leroux C, Sandt C (2022) Plastic biodegradation: do Galleria mellonella Larvae Bioassimilate Polyethylene? A Spectral Histology Approach using isotopic labeling and Infrared Microspectroscopy. Environ Sci Technol 56:525–534. https://doi.org/10.1021/acs.est.1c03417

    Article  CAS  PubMed  Google Scholar 

  19. Zhu P, Pan X, Li X, Liu X, Liu Q, Zhou J, Dai X, Qian Q (2021) Biodegradation of plastics from waste electrical and electronic equipment by greater wax moth larvae (Galleria mellonella). J Clean Prod 310:127346. https://doi.org/10.1016/j.jclepro.2021.127346

    Article  CAS  Google Scholar 

  20. Peydaei A, Bagheri H, Gurevich L, de Jonge N, Nielsen JL (2021) Mastication of polyolefins alters the microbial composition in Galleria mellonella. Environ Pollut 280:116877. https://doi.org/10.1016/j.envpol.2021.116877

    Article  CAS  PubMed  Google Scholar 

  21. Brandon A, Gao S, Tian R, Ning D, Yang S, Zhou J (2018) Criddle, Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the gut Microbiome. Environ Sci Technol 52:6526–6533. https://doi.org/10.1021/acs.est.8b02301

    Article  CAS  PubMed  Google Scholar 

  22. RoY N (1937) On the nutrition of larvae of bee-wax moth, Galleria mellonella. Z Vergleichende Physiol 24:638–643. https://doi.org/10.1007/BF00592301

    Article  CAS  Google Scholar 

  23. Wang S, Shi W, Huang Z, Zhou N, Xie Y (2022) Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. J Hazard Mater 423:127213. https://doi.org/10.1016/j.jhazmat.2021.127213

    Article  CAS  PubMed  Google Scholar 

  24. Cassone B, Grove H, Kurchaba N, Geronimo P, LeMoine C (2022) Fat on plastic: metabolic consequences of an LDPE diet in the fat body of the greater wax moth larvae (Galleria mellonella). J Hazard Mate R 425:127862. https://doi.org/10.1016/j.jhazmat.2021.127862

    Article  CAS  Google Scholar 

  25. Jorjão A, Oliveira L, Scorzoni L, Figueiredo-Godoi L, Prata M, Junqueira J (2018) From moths to caterpillars: Ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence 9:383–389. https://doi.org/10.1080/21505594.2017.1397871

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rahman A, Bharali P, Borah L, Bathari M, Taye R (2017) Post embryonic development of Galleria mellonella L. and its management strategy. J Entomol Zool Stud 5:1523–1526

    Google Scholar 

  27. Cassone B, Grove H, Elebute O, Villanueva S, LeMoine C (2020) Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc Soc Biol Sci 287:20200112. https://doi.org/10.1098/rspb.2020.0112

    Article  CAS  Google Scholar 

  28. Ren X (2003) Biodegradable plastics: a solution or a challenge? J Clean Prod 11:27–40. https://doi.org/10.1016/S0959-6526(02)00020-3

    Article  Google Scholar 

  29. Lou Y, Ekaterina P, Yang S, Lu B, Liu B, Ren N, Corvini P, Xing D (2020) Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-diet Supplementation on the Core Gut Microbiome. Environ Sci Technol 54:2821–2831. https://doi.org/10.1021/acs.est.9b07044

    Article  CAS  PubMed  Google Scholar 

  30. Jiang S, Su T, Zhao J, Wang Q (2021) Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and comparison of their degradation Effects. Polym (Basel) 13:3539–3563. https://doi.org/10.3390/polym13203539

    Article  CAS  Google Scholar 

  31. Bombelli P, Howe C, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:292–293. https://doi.org/10.1016/j.cub.2017.02.060

    Article  CAS  Google Scholar 

  32. LeMoine C, Grove H, Smith C, Cassone B (2020) A very hungry Caterpillar: polyethylene metabolism and lipid homeostasis in Larvae of the Greater Wax Moth (Galleria mellonella). Environ Sci Technol 54:14706–14715. https://doi.org/10.1021/acs.est.0c04386

    Article  CAS  PubMed  Google Scholar 

  33. Tribedi P, Das Gupta A, Sil A (2015) Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess 2:14–19. https://doi.org/10.1186/s40643-015-0044-x

    Article  Google Scholar 

  34. Ren R, Men L, Zhang Z, Guan F, Tian J, Wang B, Wang J, Zhang Y, Zhang W (2019) Biodegradation of Polyethylene by Enterobacter sp. D1 from the guts of Wax Moth Galleria mellonella. Int J Environ Res Public Health 16:1941–1948. https://doi.org/10.3390/ijerph16111941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Gao D, Li Q, Zhao Y, Li L, Lin H, Bi Q (2020) Biodegradation of polyethylene microplastic particles by the fungus aspergillus flavus from the guts of wax moth Galleria mellonella. Sci Total Environ 704:135931–135936. https://doi.org/10.1016/j.scitotenv.2019.135931

    Article  CAS  PubMed  Google Scholar 

  36. Subramani S, Umamaheswari M (2016) FTIR analysis of bacterial mediated chemical changes in polystyrene foam. Ann Biol Res 7:55–61

    CAS  Google Scholar 

  37. Umamaheswari M (2013) FTIR spectroscopic study of fungal degradation of poly(ethylene terephthalate) and polystyrene foam. Chem Eng 64:19159–19164

    Google Scholar 

  38. Ohtake Y, Kobayashi T, Asabe H, Murakami M (1998) Studies on biodegradation of LDPE — observation of LDPE films scattered in agricultural fields or in garden soil. Polym Degrad Stab 60:79–84. https://doi.org/10.1016/S0141-3910(97)00032-3

    Article  CAS  Google Scholar 

  39. Pedroso A, Rosa D (2005) Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohydr Polym 59:1–9. https://doi.org/10.1016/j.carbpol.2004.08.018

    Article  CAS  Google Scholar 

  40. Ghatge S, Yang Y, Ahn J, Hur H (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem 63:27–31. https://doi.org/10.1186/s13765-020-00511-3

    Article  CAS  Google Scholar 

  41. Peydaei A, Bagheri H, Gurevich L, de Jonge N, Nielsen J (2020) Impact of polyethylene on salivary glands proteome in Galleria melonella. Comp Biochem Physiol Part D Genomics Proteomics 34:100678. https://doi.org/10.1016/j.cbd.2020.100678

    Article  CAS  PubMed  Google Scholar 

  42. Billen P, Khalifa L, Van Gerven F, Tavernier S, Spatari S (2020) Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Sci Total Environ 735:139521. https://doi.org/10.1016/j.scitotenv.2020.139521

    Article  CAS  PubMed  Google Scholar 

  43. Yang J, Yang Y, Wu W, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of Plastic-Eating Waxworms. Environ Sci Technol 48:13776–13784. https://doi.org/10.1021/es504038a

    Article  CAS  PubMed  Google Scholar 

  44. Sanluis F, Colomer A, Rodriguez P, Bello F,Spinola M, Ruiz M, Illanes E, Castroviejo R, Aiese R (2022) Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. BioRxiv 1–27. https://doi.org/10.17632/t7b5s58vxt.2

Download references

Acknowledgements

We would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES), São Paulo Research Foundation (FAPESP); National Council for Scientific and Technological Development (CNPq) and Advanced Microscopy Laboratory (LMA) located at UNESP Chemistry Institute in Araraquara, Brazil.

Funding

This work was supported by the National Council for Scientific and Technological Development (PIBIC-CNPq Program, Processes 468/2020 and 52290/2019) and São Paulo Research Foundation (FAPESP) - (Processes number 2011/17411-8, 2014/17526-8, and 2017/19603-8). Lastly, Rondinelli D. Herculano thanks the fellowships from CNPq (grant number 317203/2021-5).

Author information

Authors and Affiliations

Authors

Contributions

Betina Sayeg Burd: Investigation, Methodology, Formal analysis, Data curation, Validation, Writing - original draft. Cassamo Ussemane Mussagy: Writing - original draft, Writing - review & editing. Junya Singulani Lacorte: Writing review & editing, Previous analysis, Methodology. Jean Lucas Tanaka: Writing - review & editing. Mateus Scontri: Writing review & editing. Giovana Sant’Ana Pegorin Brasil: Previous analysis, Writing - original draft, Writing review & editing. Nayrim Brizuela Guerra: Writing - original draft, Writing - review & editing. Maíra Terra-Garcia: Methodology, Writing - review & editing. Juliana Campos Junqueira: Methodology, Writing - review & editing. Neda Farhadi: Writing - review & editing. Patrícia Akemi Assato: Data curation, Writing - review & editing. Ana Paula De Sousa Abreu: Writing - review & editing. Camila Calderan Bebber: Writing - review & editing. Ana Marisa Fusco Almeida, Maria José Soares Mendes Giannini and Bingbing Li: Writing - review & editing. Rondinelli Donizetti Herculano: Writing - review & editing, Validation, Funding acquisition, Project administration, Resources, Writing - original draft.

Corresponding authors

Correspondence to Betina Sayeg Burd, Cassamo Ussemane Mussagy or Rondinelli Donizetti Herculano.

Ethics declarations

Conflict Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Betina Sayeg Burd, Cassamo Ussemane Mussagy and Rondinelli Donizetti Herculano these authors contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burd, B.S., Mussagy, C.U., de Lacorte Singulani, J. et al. Galleria Mellonella Larvae as an Alternative to Low-Density Polyethylene and Polystyrene Biodegradation. J Polym Environ 31, 1232–1241 (2023). https://doi.org/10.1007/s10924-022-02696-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02696-8

Keywords

Navigation