Skip to main content
Log in

Adsorption of Methylene Blue, Methyl Orange, and Crystal Violet on Microporous Coconut Shell Activated Carbon and Its Composite with Chitosan: Isotherms and Kinetics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, two adsorbents, namely coconut shell activated carbon (CSAC) and a composite of CSAC with chitosan termed as CHS-CSAC, were prepared. The two adsorbents were tested for their adsorption capacity for methylene blue (MB), methyl orange (MO), and crystal violet (CV) from their aqueous solutions under batch adsorption studies. The adsorbents were characterized by Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorbents were found to be microporous with specific active surface areas of 542.06 m2/g and 498.67 m2/g for CSAC and CHS-CSAC, respectively. The effect of pH, adsorbent dosage, and contact time was tested in sequential order for each adsorbate-adsorbent combination. For both adsorbents, maximum adsorption capacity values for the two cationic dyes (MB and CV) were obtained at a pH of 10. For MO, which is an anionic dye, maximum adsorption capacity was seen at a pH of 3 for both adsorbents. The optimal initial concentration for MB, MO, and CV were 45 mg/L, 40 mg/L, and 70 mg/L, respectively at the optimal values of dosage (10 mg) and contact time (2 h), for both the adsorbents. The batch adsorption data obtained at the optimal conditions were best fitted to Langmuir isotherm and pseudo-second-order and Elovich model kinetics for all the combinations. Superior performances of the adsorbents were observed in terms of maximum achievable adsorption capacity for each dye. The maximum loading capacity of MB, MO and CV were 217.35 mg/g (CSAC), 105.2 mg/g (CHS-CSAC) and 320.5 mg/g (CSAC), respectively. For the cationic dyes, the maximum adsorption capacity values were almost equal. The presence of rate-limiting steps other than intra-particle diffusion was envisaged in the adsorption mechanism study for the cationic dyes (MB and CV). Intra-particle diffusion was found to be the major rate-limiting step in the case of the anionic dye (MO) adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Elmorsi RR, El-Wakeel ST, Shehab El-Dein WA, Lotfy HR, Rashwan WE, Nagah M, Shaaban SA, Sayed Ahmed SA, El-Sherif IY, Abou-El-Sherbini KS (2019) Adsorption of Methylene Blue and Pb2+ by using acid-activated Posidonia oceanica waste. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-39945-1

    Article  CAS  Google Scholar 

  2. Hussain S, Kamran M, Khan SA, Shaheen K, Shah Z, Suo H, Khan Q, Shah AB, Rehman WU, Al-Ghamdi YO, Ghani U (2021) Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int J Biol Macromol 168:383–394. https://doi.org/10.1016/j.ijbiomac.2020.12.054

    Article  CAS  PubMed  Google Scholar 

  3. Zheng X, Yu N, Wang X, Wang Y, Wang L, Li X, Hu X (2018) Adsorption properties of granular activated carbon-supported titanium dioxide particles for dyes and copper ions. Sci Rep 8:3–11. https://doi.org/10.1038/s41598-018-24891-1

    Article  CAS  Google Scholar 

  4. Tang Y, He T, Liu Y, Zhou B, Yang R, Zhu L (2018) Sorption behavior of methylene blue and rhodamine B mixed dyes onto chitosan graft poly (acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid) hydrogel. Adv Polym Technol 37:2568–2578. https://doi.org/10.1002/adv.21932

    Article  CAS  Google Scholar 

  5. Soni S, Bajpai PK, Mittal J, Arora C (2020) Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water. J Mol Liq 314:113642. https://doi.org/10.1016/j.molliq.2020.113642

    Article  CAS  Google Scholar 

  6. Foroutan R, Mohammadi R, Sohrabi N, Sahebi S, Farjadfard S, Esvandi Z, Ramavandi B (2020) Calcined alluvium of agricultural streams as a recyclable and cleaning tool for cationic dye removal from aqueous media. Environ Technol Innov. https://doi.org/10.1016/j.eti.2019.100530

    Article  Google Scholar 

  7. Foroutan R, Mohammadi R, Ahmadi A, Bikhabar G, Babaei F, Ramavandi B (2022) Impact of ZnO and Fe3O4 magnetic nanoscale on the methyl violet 2B removal efficiency of the activated carbon oak wood. Chemosphere 286:131632. https://doi.org/10.1016/j.chemosphere.2021.131632

    Article  CAS  PubMed  Google Scholar 

  8. Ahmadi A, Foroutan R, Esmaeili H, Peighambardoust SJ, Hemmati S, Ramavandi B (2022) Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for uptake of cationic dye molecules from water and wastewater. Mater Chem Phys 284:126088. https://doi.org/10.1016/j.matchemphys.2022.126088

    Article  CAS  Google Scholar 

  9. Foroutan R, Peighambardoust SJ, Hemmati S, Khatooni H, Ramavandi B (2021) Preparation of clinoptilolite/starch/CoFe2O4 magnetic nanocomposite powder and its elimination properties for cationic dyes from water and wastewater. Int J Biol Macromol 189:432–442. https://doi.org/10.1016/j.ijbiomac.2021.08.144

    Article  CAS  PubMed  Google Scholar 

  10. Foroutan R, Peighambardoust SJ, Aghdasinia H, Mohammadi R, Ramavandi B (2020) Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids. Environ Sci Pollut Res 27:44218–44229. https://doi.org/10.1007/s11356-020-10330-0

    Article  CAS  Google Scholar 

  11. Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM (2021) Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: a kinetic, equilibrium and thermodynamic study. Molecules 26:1–19. https://doi.org/10.3390/molecules26082241

    Article  CAS  Google Scholar 

  12. Radoor S, Karayil J, Jayakumar A, Parameswaranpillai J, Siengchin S (2021) Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: synthesis, kinetics and isotherm studies. Colloids Surfaces A 611:125852. https://doi.org/10.1016/j.colsurfa.2020.125852

    Article  CAS  Google Scholar 

  13. Foroutan R, Peighambardoust SJ, Esvandi Z, Khatooni H, Ramavandi B (2021) Evaluation of two cationic dyes removal from aqueous environments using CNT/MgO/CuFe2O4magnetic composite powder: a comparative study. J Environ Chem Eng 9:104752. https://doi.org/10.1016/j.jece.2020.104752

    Article  CAS  Google Scholar 

  14. Dai C, Zhang M, Guo X, Ma X (2021) Mesoporous composite Ni-C-N/SA for selective adsorption of methylene blue from water. Chem Eng J 407:127181. https://doi.org/10.1016/j.cej.2020.127181

    Article  CAS  Google Scholar 

  15. Daraei H, Mittal A (2017) Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater. Desalin Water Treat 90:294–298. https://doi.org/10.5004/dwt.2017.21344

    Article  CAS  Google Scholar 

  16. Rajeshkannan R, Rajasimman M, Rajamohan N (2011) Dekolorizacija malahitno zelenog pomoću semena tamarinda: Optimizacija, izoterme i kinetika. Chem Ind Chem Eng Q 17:67–79. https://doi.org/10.2298/CICEQ100716056R

    Article  CAS  Google Scholar 

  17. Latif S, Rehman R, Imran M, Iqbal S, Kanwal A, Mitu L (2019) Removal of acidic dyes from aqueous media using Citrullus lanatus peels: an agrowaste-based adsorbent for environmental safety. J Chem. https://doi.org/10.1155/2019/6704953

    Article  Google Scholar 

  18. Rehman R, Farooq S, Mahmud T (2019) Use of Agro-waste Musa acuminata and Solanum tuberosum peels for economical sorptive removal of Emerald green dye in ecofriendly way. J Clean Prod 206:819–826. https://doi.org/10.1016/j.jclepro.2018.09.226

    Article  CAS  Google Scholar 

  19. Mas Haris MRH, Sathasivam K (2009) The removal of methyl red from aqueous solutions using banana pseudostem fibers. Am J Appl Sci 6:1690–1700. https://doi.org/10.3844/ajassp.2009.1690.1700

    Article  CAS  Google Scholar 

  20. Foroutan R, Mohammadi R, Ramavandi B, Bastanian M (2018) Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon. Korean J Chem Eng 35:2207–2219. https://doi.org/10.1007/s11814-018-0145-2

    Article  CAS  Google Scholar 

  21. Shahul Hameed K, Muthirulan P, Meenakshi Sundaram M (2017) Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: equilibrium and kinetics studies. Arab J Chem 10:S2225–S2233. https://doi.org/10.1016/j.arabjc.2013.07.058

    Article  CAS  Google Scholar 

  22. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  CAS  Google Scholar 

  23. Lu Y, Li S (2019) Preparation of hierarchically interconnected porous banana peel activated carbon for methylene blue adsorption. J Wuhan Univ Technol Mater Sci Ed 34:472–480. https://doi.org/10.1007/s11595-019-2076-0

    Article  CAS  Google Scholar 

  24. Ren Y, Cui C, Wang P (2018) Pomelo peel modified with citrate as a sustainable adsorbent for removal of methylene blue from aqueous solution. Molecules. https://doi.org/10.3390/molecules23061342

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rattanapan S, Srikram J, Kongsune P (2017) Adsorption of methyl orange on coffee grounds activated carbon. Energy Procedia 138:949–954. https://doi.org/10.1016/j.egypro.2017.10.064

    Article  CAS  Google Scholar 

  26. Zhang B, Wu Y, Cha L (2020) Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: performance, isotherm, and kinetic studies. J Dispers Sci Technol 41:125–136. https://doi.org/10.1080/01932691.2018.1561298

    Article  CAS  Google Scholar 

  27. Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manag 203:237–244. https://doi.org/10.1016/j.jenvman.2017.07.029

    Article  CAS  Google Scholar 

  28. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Mesoporous Crosslinked chitosan-activated charcoal composite for the removal of thionine cationic dye: comprehensive adsorption and mechanism study. J Polym Environ 28:1095–1105. https://doi.org/10.1007/s10924-020-01671-5

    Article  CAS  Google Scholar 

  29. Kamal S, Khan F, Kausar H, Khan MS, Ahmad A, Ishraque Ahmad S, Asim M, Alshitari W, Nami SAA (2020) Synthesis, characterization, morphology, and adsorption studies of ternary nanocomposite comprising graphene oxide, chitosan, and polypyrrole. Polym Compos 41:3758–3767. https://doi.org/10.1002/pc.25673

    Article  CAS  Google Scholar 

  30. Sharififard H, Rezvanpanah E (2021) Ultrasonic-assisted synthesis of SiO2 nanoparticles and SiO2/chitosan/Fe nanocomposite and their application for vanadium adsorption from aqueous solution. Environ Sci Pollut Res 28:11586–11597. https://doi.org/10.1007/s11356-020-11346-2

    Article  CAS  Google Scholar 

  31. Nowruzi R, Heydari M, Javanbakht V (2020) Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. Int J Biol Macromol 147:209–216. https://doi.org/10.1016/j.ijbiomac.2020.01.044

    Article  CAS  PubMed  Google Scholar 

  32. Hoang LP, Van HT, Hang Nguyen TT, Nguyen VQ, Thang PQ (2020) Coconut shell activated carbon/CoFe2O4 composite for the removal of rhodamine B from aqueous solution. J Chem. https://doi.org/10.1155/2020/9187960

    Article  Google Scholar 

  33. Simonetti EAN, de Cividanes LS, Fonseca BCS, de Freitas APBR, Coutinho AR, Thim GP (2018) TiO2–Carbon composite using coconut waste as carbon source: Sonocatalysis and adsorption evaluation. Surfaces and Interfaces 12:124–134. https://doi.org/10.1016/j.surfin.2018.04.008

    Article  CAS  Google Scholar 

  34. Bello OS, Ahmad MA (2012) Coconut (Cocos nucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions. Sep Sci Technol 47:903–912. https://doi.org/10.1080/01496395.2011.630335

    Article  CAS  Google Scholar 

  35. Singh KP, Mohan D, Sinha S, Tondon GS, Gosh D (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res 42:1965–1976. https://doi.org/10.1021/ie020800d

    Article  CAS  Google Scholar 

  36. Zhou G, Wang KP, Liu HW, Wang L, Xiao XF, Dou DD, Fan YB (2018) Three-dimensional polylactic acid@graphene oxide/chitosan sponge bionic filter: highly efficient adsorption of crystal violet dye. Int J Biol Macromol 113:792–803. https://doi.org/10.1016/j.ijbiomac.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  37. Zeng L, Xie M, Zhang Q, Kang Y, Guo X, Xiao H, Peng Y, Luo J (2015) Chitosan/organic rectorite composite for the magnetic uptake of methylene blue and methyl orange. Carbohydr Polym 123:89–98. https://doi.org/10.1016/j.carbpol.2015.01.021

    Article  CAS  PubMed  Google Scholar 

  38. Labidi A, Salaberria AM, Fernandes SCM, Labidi J, Abderrabba M (2019) Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous solution. Materials (Basel). https://doi.org/10.3390/ma12030361

    Article  Google Scholar 

  39. Cho DW, Jeon BH, Chon CM, Schwartz FW, Jeong Y, Song H (2015) Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution. J Ind Eng Chem 28:60–66. https://doi.org/10.1016/j.jiec.2015.01.023

    Article  CAS  Google Scholar 

  40. Ramakrishnan RK, Padil VVT, Wacławek S, Černík M, Varma RS (2021) Eco-friendly and economic, adsorptive removal of cationic and anionic dyes by bio-based karaya gum—chitosan sponge. Polymers (Basel) 13:1–20. https://doi.org/10.3390/polym13020251

    Article  CAS  Google Scholar 

  41. Djilani C, Zaghdoudi R, Magri P, Djazi F, Lallam A, Bouchekima B (2019) Elaboration and characterization of chitosan/banana peel biocomposite for the removal of dyes from wastewater. Desalin Water Treat 151:189–198. https://doi.org/10.5004/dwt.2019.23887

    Article  CAS  Google Scholar 

  42. Pal A, Pan S, Saha S (2013) Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chem Eng J 217:426–434. https://doi.org/10.1016/j.cej.2012.11.120

    Article  CAS  Google Scholar 

  43. Sahin OI, Saygi-Yalcin B, Saloglu D (2020) Adsorption of ibuprofen from wastewater using activated carbon and graphene oxide embedded chitosan-PVA: equilibrium, kinetics, and thermodynamic and optimization with central composite design. Desalin Water Treat 179:396–417. https://doi.org/10.5004/dwt.2020.25027

    Article  CAS  Google Scholar 

  44. Anitha T, Kumar PS, Kumar KS, Sriram K, Ahmed JF (2016) Biosorption of lead(II) ions onto nano-sized chitosan particle blended polyvinyl alcohol (PVA): adsorption isotherms, kinetics and equilibrium studies. Desalin Water Treat 57:13711–13721. https://doi.org/10.1080/19443994.2015.1061951

    Article  CAS  Google Scholar 

  45. Maleki A, Pajootan E, Hayati B (2015) Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 51:127–134. https://doi.org/10.1016/j.jtice.2015.01.004

    Article  CAS  Google Scholar 

  46. Krishni RR, Foo KY, Hameed BH (2014) Adsorption of methylene blue onto papaya leaves: comparison of linear and nonlinear isotherm analysis. Desalin Water Treat 52:6712–6719. https://doi.org/10.1080/19443994.2013.827818

    Article  CAS  Google Scholar 

  47. Kamdod AS, Pavan Kumar MV (2022) Adsorption of Methylene blue and Methyl orange on tamarind seed activated carbon and its composite with chitosan: equilibrium and kinetic studies. Desalin Water Treat 252:408–419. https://doi.org/10.5004/dwt.2022.28270

    Article  CAS  Google Scholar 

  48. Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B (2022) Generation of biodiesel from edible waste oil using ZIF-67-KOH modified Luffa cylindrica biomass catalyst. Fuel 322:124181. https://doi.org/10.1016/j.fuel.2022.124181

    Article  CAS  Google Scholar 

  49. Hussain I, Li Y, Qi J, Li J, Wang L (2018) Nitrogen-enriched carbon sheet for Methyl blue dye adsorption. J Environ Manag 215:123–131. https://doi.org/10.1016/j.jenvman.2018.03.051

    Article  CAS  Google Scholar 

  50. Foroutan R, Peighambardoust SJ, Latifi P, Ahmadi A, Alizadeh M, Ramavandi B (2021) Carbon nanotubes/β-cyclodextrin/MnFe2O4 as a magnetic nanocomposite powder for tetracycline antibiotic decontamination from different aqueous environments. J Environ Chem Eng 9:106344. https://doi.org/10.1016/j.jece.2021.106344

    Article  CAS  Google Scholar 

  51. Hosseini SS, Hamadi A, Foroutan R, Peighambardoust SJ, Ramavandi B (2022) Decontamination of Cd2+ and Pb2+ from aqueous solution using a magnetic nanocomposite of eggshell/starch/Fe3O4. J Water Process Eng 48:102911. https://doi.org/10.1016/j.jwpe.2022.102911

    Article  Google Scholar 

  52. Sharaf El-Deen GE, Sharaf El-Deen SEA (2016) Kinetic and isotherm studies for adsorption of Pb(II) from aqueous solution onto coconut shell activated carbon. Desalin Water Treat 57:28910–28931. https://doi.org/10.1080/19443994.2016.1193825

    Article  CAS  Google Scholar 

  53. Govorin AS, Konovalov NP, Gubanov ND (2021) Study in fatty acids of tall oils and their products of esterification by the method of IR spectrometry for analytical control of preparation of esters. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1942/1/012018

    Article  Google Scholar 

  54. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  55. Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B (2019) Physicochemical behavior of Penaeuse semisulcatuse Chitin for Pb and Cd removal from aqueous environment. J Polym Environ 27:263–274. https://doi.org/10.1007/s10924-018-1345-x

    Article  CAS  Google Scholar 

  56. Ebrahimian Pirbazari A, Saberikhah E, Habibzadeh Kozani SS (2014) Fe3O4-wheat straw: preparation, characterization and its application for methylene blue adsorption. Water Resour Ind 7–8:23–37. https://doi.org/10.1016/j.wri.2014.09.001

    Article  Google Scholar 

  57. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep Purif Technol 53:97–110. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  58. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116. https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  59. Choi HJ (2019) Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using a hybrid adsorbent, eggshell and sericite, in aqueous solution. Water Sci Technol 79:1922–1933. https://doi.org/10.2166/wst.2019.191

    Article  CAS  PubMed  Google Scholar 

  60. Bahrudin NN, Nawi MA, Lelifajri (2019) Kinetics and isotherm modeling of phenol adsorption by immobilizable activated carbon. React Kinet Mech Catal 126:61–82. https://doi.org/10.1007/s11144-018-01528-y

    Article  CAS  Google Scholar 

  61. Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48. https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  62. Rocha LS, Almeida Â, Nunes C, Henriques B, Coimbra MA, Lopes CB, Silva CM, Duarte AC, Pereira E (2016) Simple and effective chitosan based films for the removal of Hg from waters: equilibrium, kinetic and ionic competition. Chem Eng J 300:217–229. https://doi.org/10.1016/j.cej.2016.04.054

    Article  CAS  Google Scholar 

  63. Aswani MT, Pavan Kumar MV (2019) A novel water hyacinth based biosorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) removal from aqueous solution. Desalin Water Treat 165:163–176. https://doi.org/10.5004/dwt.2019.24581

    Article  CAS  Google Scholar 

  64. Abdul Mubarak NS, Chuan TW, Khor HP, Jawad AH, Wilson LD, Sabar S (2021) Immobilized Fe-loaded chitosan film for methyl orange dye removal: competitive ions, reusability, and mechanism. J Polym Environ 29:1050–1062. https://doi.org/10.1007/s10924-020-01949-8

    Article  CAS  Google Scholar 

  65. Yağmur HK, Kaya İ (2021) Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130071

    Article  Google Scholar 

  66. Senthil Kumar P, Sivaranjanee R, Vinothini U, Raghavi M, Rajasekar K, Ramakrishnan K (2014) Adsorption of dye onto raw and surface modified tamarind seeds: isotherms, process design, kinetics and mechanism. Desalin Water Treat 52:2620–2633. https://doi.org/10.1080/19443994.2013.792016

    Article  CAS  Google Scholar 

  67. Chen W, Luan J, Yu X, Wang X, Ke X (2021) Preparation of core-shell structured polystyrene @ graphene oxide composite microspheres with high adsorption capacity and its removal of dye contaminants. Environ Technol (United Kingdom) 42:3840–3851. https://doi.org/10.1080/09593330.2020.1743372

    Article  CAS  Google Scholar 

  68. Hou XX, Deng QF, Ren TZ, Yuan ZY (2013) Adsorption of Cu2+ and methyl orange from aqueous solutions by activated carbons of corncob-derived char wastes. Environ Sci Pollut Res 20:8521–8534. https://doi.org/10.1007/s11356-013-1792-9

    Article  CAS  Google Scholar 

  69. Huang X, Zhan X, Wen C, Xu F, Luo L (2018) Amino-functionalized magnetic bacterial cellulose/activated carbon composite for Pb2+ and methyl orange sorption from aqueous solution. J Mater Sci Technol 34:855–863. https://doi.org/10.1016/j.jmst.2017.03.013

    Article  CAS  Google Scholar 

  70. Zhu W, Jiang X, Liu F, You F, Yao C (2020) Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of methyl orange. Polymers (Basel). https://doi.org/10.3390/POLYM12092169

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mittal A, Malviya A, Kaur D, Mittal J, Kurup L (2007) Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J Hazard Mater 148:229–240. https://doi.org/10.1016/j.jhazmat.2007.02.028

    Article  CAS  PubMed  Google Scholar 

  72. Yakout SM, Ali MS (2015) Removal of the Hazardous crystal violet dye by adsorption on corncob-based and phosphoric acid-activated carbon. Part Sci Technol 33:621–625. https://doi.org/10.1080/02726351.2015.1016642

    Article  CAS  Google Scholar 

  73. Zhang JX, Ou LL (2013) Kinetic, isotherm and thermodynamic studies of the adsorption of crystal violet by activated carbon from peanut shells. Water Sci Technol 67:737–744. https://doi.org/10.2166/wst.2012.605

    Article  CAS  PubMed  Google Scholar 

  74. Senthilkumaar S, Kalaamani P, Subburaam CV (2006) Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree. J Hazard Mater 136:800–808. https://doi.org/10.1016/j.jhazmat.2006.01.045

    Article  CAS  PubMed  Google Scholar 

  75. Aljeboree AM, Alkaim AF, Al-Dujaili AH (2015) Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon. Desalin Water Treat 53:3656–3667. https://doi.org/10.1080/19443994.2013.877854

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malladi V Pavan Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamdod, A.S., Kumar, M.V.P. Adsorption of Methylene Blue, Methyl Orange, and Crystal Violet on Microporous Coconut Shell Activated Carbon and Its Composite with Chitosan: Isotherms and Kinetics. J Polym Environ 30, 5274–5289 (2022). https://doi.org/10.1007/s10924-022-02597-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02597-w

Keywords

Navigation