Skip to main content
Log in

Adsorption of Indigo Carmine from Aqueous Solution by Chitosan and Chitosan/Activated Carbon Composite: Kinetics, Isotherms and Thermodynamics Studies

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Activated carbon (AC) obtained from peanut shell, chitosan (CH) obtained from crab shell, and prepared chitosan/ activated carbon (CH/AC) composite were studied in a batch system for the adsorption of indigo carmine (IC) from aqueous solution. Characterizations of AC, CH, and CH/AC were investigated by FTIR, SEM, XRD, zero-point charge pHpzc, thermal analysis, surface area BET, and pore-size distribution. Adsorbent weight (0.01–0.1 g), initial pH solution (2–10), initial indigo carmine concentration (10–50 mg/l) and contact time (0–60 min) were used as parameters in the adsorption equilibrium experiments. Pseudo-second-order kinetic model was found to describe the adsorption process better than pseudo-first-order kinetic model. Langmuir, Freundlich, and Temkin isotherms applied to the adsorption data reveal that AC and CH/AC best fitted Langmuir and Freundlich models when CH data fitted Temkin model with maximum adsorption capacities of 82.64 mg/g for AC, 96.15 mg/g for CH, and 208.33 mg/g for CH/AC at 30 °C. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were -23.42 kJ/mol, 10.66 kJ/mol, and 112.40 J/K/mol, respectively for CH/AC. The negative value of ΔG° and a positive value of ΔH° indicate that the removal of indigo carmine by CH/AC is spontaneous and an endothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kousha, S. Tavakoli, E. Daneshvar, A. Vazirzadeh, and A. Bhatnagar, J. Mol. Liq., 207, 266 (2015).

    Article  CAS  Google Scholar 

  2. E. Steingruber, “Indigo and Indigo Colorants”, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2004.

    Book  Google Scholar 

  3. C. F. I. Jabs, H. P. Drutz, and R. L. Summit, Am. J. Obstet. Gynecol., 185, 1368 (2001).

    Article  CAS  Google Scholar 

  4. R. E. Palma-Goyes, J. Silva-Agredo, I. Gonzalez, and R. A. Torres-Palma, Electrochim. Acta, 140, 427 (2014).

    Article  CAS  Google Scholar 

  5. S. Ammar, R. Abdelhedi, C. Flox, C. Arias, and E. Brillas, Environ. Chem. Lett., 4, 229 (2006).

    Article  CAS  Google Scholar 

  6. M. M. Secula, I. Cretescu, and S. Petrescu, Desalination, 277, 227 (2011).

    Article  CAS  Google Scholar 

  7. Y. Hu, X. Chen, Z. Liu, G. Wang, and S. Liao, J. Environ. Manage, 166, 512 (2016).

    Article  CAS  Google Scholar 

  8. T. N. Ramesh and V. P. Sreenivasa, J. Mater., 2015, Article ID 753057 (2015). https://doi.org/10.1155/2015/753057.

    Google Scholar 

  9. S. Sanchez-Rodriguez, J. Trujillo-Reyes, E. Gutierrez-Segura, M. Solache-Rios, and A. Colin-Cruz, Sep. Sci. Technol., 50, 1602 (2015).

    Article  CAS  Google Scholar 

  10. J. Zhang, Q. Zhou, and L. Ou, Desalin. Water Treat., 57, 718 (2016).

    Article  CAS  Google Scholar 

  11. A. Mittal, J. Mittal, and L. Kurup, J. Hazard. Mater., 137, 591 (2006).

    Article  CAS  Google Scholar 

  12. J. Zhang, P. Zhang, S. Zhang, and Q. Zhou, Sep. Sci. Technol., 49, 877 (2014).

    Article  CAS  Google Scholar 

  13. F. Mbarki, A. Kesraoui, M. Seffen, and P. Ayrault, Kinetic, Water Air Soil Pollut., 229, 95 (2018).

    Article  Google Scholar 

  14. Z. Al-Qodah and R. Shawabkah, Braz. J. Chem. Eng., 26, 127 (2009).

    Article  CAS  Google Scholar 

  15. A. A. Aljeboree, A. N Alshirifi, and A. F. Alkaim, Arabian J. Chem., 10, S3381 (2017).

    Article  CAS  Google Scholar 

  16. A. Khaled, A. El Nemr, A. El-Sikaily, and A. Abdelwahab, Desalination, 238, 210 (2009).

    Article  CAS  Google Scholar 

  17. M. A. Ahmad and N. K. Rahman, Chem. Eng. J., 170, 154 (2011).

    Article  CAS  Google Scholar 

  18. U. Gecgel and H. Kolancilar, Nat. Prod. Res., 26, 659 (2012).

    Article  CAS  Google Scholar 

  19. Z. Z. Shahraki, H. Sharififard, and A. Lashanizadegan, Mater. Res. Express, 5, 055603 (2018).

    Article  Google Scholar 

  20. S. Kumari, P. Rath, A. S. H. Kumar, and T. N. Tiwari, Environ. Technol. Innovation, 3, 77 (2015).

    Article  Google Scholar 

  21. C. Muangchinda, C. Chamcheun, R. Sawatsing, and O. Pinyakong, Environ. Sci. Pollut. Res., 25, 26927 (2018).

    Article  CAS  Google Scholar 

  22. S. Hydari, H. Sharififard, M. Nabavinia, and M. R. Parvizi, Chem. Eng. J., 193–194, 276 (2012).

    Article  Google Scholar 

  23. S. S. Danalioglu, S. S. Bayazit, O. K. Kuyumcu, and M. A. Salam, J. Mol. Liq., 240, 589 (2017).

    Article  CAS  Google Scholar 

  24. H. Karaer and I. Kaya, Microporous Mesoporous Mater., 232, 26 (2016).

    Article  CAS  Google Scholar 

  25. R. Lelifajri and R. Nurfatimah, Carbohydr. Polym., 199, 499 (2018).

    Article  Google Scholar 

  26. H. Sharififard, Z. H. Shahraki, E. Rezvanpanah, and S. R. Hosseini, Bioresour. Technol., 270, 562 (2018).

    Article  CAS  Google Scholar 

  27. Y. Guo and D. A. Rockstraw, Microporous Mesoporous Mater., 100, 12 (2007).

    Article  CAS  Google Scholar 

  28. H. El Knidri, R. El Khalfaouy, A. Laajeb, A. Addaou, and A. Lahsini, Process Saf. Environ. Prot., 104, 395 (2016).

    Article  Google Scholar 

  29. H. Zhang, S. Yun, L. Song, Y. Zhang, and Y. Zhao, Int. J. Biol. Macromol., 96, 334 (2017).

    Article  CAS  Google Scholar 

  30. J. Brugnerotto, J. Lizardi, F. M. Goycoolea, W. Arguelles-Monal, J. Desbrieres, and M. Rinaudo, Polymer, 42, 3569 (2001).

    Article  CAS  Google Scholar 

  31. Z. Harrache, M. Abbas, T. Aksil, and M. Trari, Microchem. J., 144, 180 (2019).

    Article  CAS  Google Scholar 

  32. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938).

    Article  CAS  Google Scholar 

  33. G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn., 16, 470 (1983).

    Article  CAS  Google Scholar 

  34. E. E. Barrett, L.G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951).

    Article  CAS  Google Scholar 

  35. L. Mouni, L. Belkhiri, J. C. Bollinger, A. Bouzaz, A. Assadi, A. Tirri, F. Dahmoune, K. Madani, and H. Remini, Appl. Clay Sci., 153, 38 (2018).

    Article  CAS  Google Scholar 

  36. F. Al-Sagheer, M. Al-Sughayer, S. Muslim, and M. Z. Elsabee, Carbohydr. Polym., 77, 410 (2009).

    Article  CAS  Google Scholar 

  37. Y. Wang, Y. Chang, L. Yu, C. Zhang, X. Xu, Y. Xue, Z. Li, and C. Xue, Carbohydr. Polym., 92, 90 (2013).

    Article  CAS  Google Scholar 

  38. A. Kucukgulmez, M. Celik, Y. Yanar, D. Sen, H. Polat, and E. Kadak, Food Chem., 126, 1144 (2011).

    Article  CAS  Google Scholar 

  39. M. M. Mohammed, P. Williams, and O. Tverezovskaya, Food Hydrocolloids, 31, 166 (2013).

    Article  CAS  Google Scholar 

  40. F. Marrakchi, M. J. Ahmed, W. A. Khanday, M. Asif, and B. H. Hameed, Int. J. Biol. Macromol., 98, 233 (2017).

    Article  CAS  Google Scholar 

  41. A. A. Ahmad, M. M. Loh, and J. A. Aziz, Dyes Pigm., 75, 263 (2007).

    Article  CAS  Google Scholar 

  42. A. Allwar, IOSR J. Appl. Chem., 2, 9 (2012).

    Article  CAS  Google Scholar 

  43. H. Struszczyk, J. Appl. Polym. Sci., 33, 177 (1987).

    Article  CAS  Google Scholar 

  44. M. M. Yen, J. H. Yang, and J. L. Mau, Carbohydr. Polym., 75, 15 (2009).

    Article  CAS  Google Scholar 

  45. K. Malins, V. Kampars, J. Brinks, I. Neibolte and R. Murnieks, I. Appl. Catal. B, 176–177, 553 (2015).

    Article  Google Scholar 

  46. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, R. F. Reinoso, J. Rouquerol, and K. S. W. Sing, J. P. Pure Appl. Chem., 87, 1051 (2015).

    Article  CAS  Google Scholar 

  47. G. Crini and P. M. Badot, “Sorption Process and Pollution: Conventional and Non-conventional Sorbents”, p.497, Presses Universitaires de Franche-Comté, 2010.

    Google Scholar 

  48. D. Mitogiannis, G. Markou, A. Celekli, and H. Bozkurt, J. Environ. Chem. Eng., 3, 670 (2015).

    Article  Google Scholar 

  49. N. A. S. Mubarak, A. H. Jawad, and W. I. Nawawi, Energy Ecol. Environ., 2, 85 (2017).

    Article  Google Scholar 

  50. T. B. Gupta and D. H. Lataye, J. Hazard. Toxic Radioact. Waste, 21, 04017013 (2017).

    Article  Google Scholar 

  51. T. Oymak and E. Bagda, CLEAN-Soil Air Water, 46, 1700186 (2018).

    Article  Google Scholar 

  52. U. U. Lakshmi, V. C. Srivastava, I. D. Mall, and D. H. Lataye, J. Environ. Manage, 90, 710 (2009).

    Article  CAS  Google Scholar 

  53. L. Zhang, Q. Liu, P. Hu, and R. Huang, Desalin. Water Treat., 57, 17011 (2016).

    CAS  Google Scholar 

  54. R. Huang, Q. Liu, J. Huo, and B. Yang, Arabian J. Chem., 10, 24 (2017).

    Article  CAS  Google Scholar 

  55. S. Lagergren, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1 (1898).

    Google Scholar 

  56. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  57. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div., 89, 31 (1963).

    Google Scholar 

  58. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  59. H. Freundlich and W. Heller, J. Am. Chem. Soc., 61, 2228 (1939).

    Article  CAS  Google Scholar 

  60. M. J. Temkin and V. Pyzhev, Acta Physicochimica URSS, 12, 217 (1940).

    Google Scholar 

  61. T. W. Weber and R. K. Chakravorti, AlChE J., 20, 228 (1974).

    Article  CAS  Google Scholar 

  62. S. Mohan and J. Karthikeyan, Environ. Pollut., 97, 183 (1997).

    Article  CAS  Google Scholar 

  63. S. Goldberg, “Chemical Processes in Soils”, SSSA Book Series 8, pp.489–517, Soil Science Society of America, 2005.

    Google Scholar 

  64. A. G. S. Prado, J. D. Torres, E. A. Faria, and S. C. L. Dias, J. Colloid Interface Sci., 277, 43 (2004).

    Article  CAS  Google Scholar 

  65. J. Zolgharnein, M. Bagtash, and N. Asanjarani, J. Environ. Chem. Eng., 2, 988 (2014).

    Article  CAS  Google Scholar 

  66. M. Bagtash and J. Zolgharnein, Wiley Chemometrics, 32, e3039 (2018).

    Article  Google Scholar 

  67. F. S. C. dos Anjos, E. F. S. Vieira, and A. R. Cestari, J. Colloid Interface Sci., 253, 243 (2002).

    Article  Google Scholar 

  68. M. M. Zazycki, M. Godinho, D. Perondi, E. L. Foletto, G. C. Collazzo, and G. L. Dotto, J. Cleaner Prod., 171, 57 (2018).

    Article  CAS  Google Scholar 

  69. D. Pathania, S. Sharma, and P. Singh, Arabian J. Chem., 10, S1445 (2017).

    Article  CAS  Google Scholar 

  70. P. Saha and S. Chowdhury in “Thermodynamics” (M. Tadashi Ed.), pp.349–364, InTech Europe, 2011.

  71. A. Kesraoui, T. Selmi, M. Seffen, and F. Brouers, Environ. Sci. Pollut. Res., 24, 9940 (2017).

    Article  CAS  Google Scholar 

  72. R. A. Reza and M. Ahmaruzzaman, J. Environ. Chem. Eng., 3, 395 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the Adminitrative authorities of “Ecole Normale Supérieure” (ENS) of Natitingou, Benin for research financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques K. Fatombi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatombi, J.K., Idohou, E.A., Osseni, S.A. et al. Adsorption of Indigo Carmine from Aqueous Solution by Chitosan and Chitosan/Activated Carbon Composite: Kinetics, Isotherms and Thermodynamics Studies. Fibers Polym 20, 1820–1832 (2019). https://doi.org/10.1007/s12221-019-1107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1107-y

Keywords

Navigation