Skip to main content
Log in

Porous Biodegradable Sodium Alginate Composite Fortified with Hibiscus Sabdariffa L. Calyx Extract for the Multifarious Biological Applications and Extension of Climacteric Fruit Shelf-Life

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Fruits and vegetables are essential sources of nutrient and bioactive compounds that confer beneficial effects on human health. However, their short shelf-life at room temperature causes losses and waste during all phases of the supply chain and handling. In this study, a porous biodegradable sodium alginate composite fortified with Hibiscus sabdariffa L. calyx extract was fabricated by freeze-drying and evaluated for multifarious applications. Scanning electron micrograph of composite with or without extract indicated uniformly distributed porous structure, whereas contact angles of 18.47º and 34.43º for control and test composite, respectively indicated that the samples were hydrophilic. Cytotoxicity assay indicated that the composites were compatible with renal cells (Vero) and human keratinocyte cells (HaCaT) , yielding a > 80% viability. Furthermore, the H. sabdariffa L. extract fortified composite delayed the spoilage of climacteric fruits during storage and showed improved human keratinocyte cells migration. The results of the blood coagulation assessment showed a dose-dependent hemostasis activity for the test composite suggesting its potential biological efficacy. Thus, the composite can be further explored as a multifarious functional stick-fresh composite for the shelf-life extension of climacteric fruits and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

The data and the materials are all available in this article.

References

  1. Ishangulyyev R, Kim S, Lee SH (2019) Understanding food loss and waste-why are we losing and wasting food? Foods 8(8):297. https://doi.org/10.3390/foods8080297

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumar D, Kalita P (2017) Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6(1):8. https://doi.org/10.3390/foods6010008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lamanna E (2016) The wealth in waste: america’s ability to enter the waste to energy market by embracing european landfill diversion, waste framework, and renewable energy laws and waste to energy initiatives. Cardozo J Int’l & Comp L 25:347

    Google Scholar 

  4. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17(3):512–531. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  PubMed  Google Scholar 

  5. Li D, Zhang X, Li L, Aghdam MS, Wei X, Liu J et al (2019) Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit. Food Chem 285:163–170. https://doi.org/10.1016/j.foodchem.2019.01.150

    Article  CAS  PubMed  Google Scholar 

  6. Li D, Limwachiranon J, Li L, Du R, Luo Z (2016) Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chem 208:272–278. https://doi.org/10.1016/j.foodchem.2016.03.113

    Article  CAS  PubMed  Google Scholar 

  7. Thakur R, Pristijono P, Bowyer M, Singh SP, Scarlett CJ, Stathopoulos CE et al (2019) A starch edible surface coating delays banana fruit ripening. LWT 100:341–347. https://doi.org/10.1016/j.lwt.2018.10.055

    Article  CAS  Google Scholar 

  8. Vu K, Hollingsworth R, Leroux E, Salmieri S, Lacroix M (2011) Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res Int 44(1):198–203. https://doi.org/10.1016/j.foodres.2010.10.037

    Article  CAS  Google Scholar 

  9. Goudar N, Vanjeri VN, Hiremani VD, Gasti T, Khanapure S, Masti SP et al (2022) Ionically crosslinked chitosan/tragacanth gum based polyelectrolyte complexes for antimicrobial biopackaging applications. J Polym Environ 30(6):2419–2434

    Article  CAS  Google Scholar 

  10. Amaregouda Y, Kamanna K, Gasti T, Kumbar V (2022) Enhanced functional properties of biodegradable polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) composite films reinforced with l-alanine surface modified CuO nanorods. J Polym Environ 30(6):2559–2578. https://doi.org/10.1007/s10924-022-02377-6

    Article  CAS  Google Scholar 

  11. Ghasemizad S, Pirsa S, Amiri S, Abdosatari P (2022) Optimization and characterization of bioactive biocomposite film based on orange peel incorporated with gum arabic reinforced by Cr2O3 nanoparticles. J Polym Environ 30(6):2493–2506. https://doi.org/10.1007/s10924-021-02357-2

    Article  CAS  Google Scholar 

  12. Fan Y, Yang J, Duan A, Li X (2021) Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package. Int J Biol Macromol 181:1003–1009. https://doi.org/10.1016/j.ijbiomac.2021.04.111

    Article  CAS  PubMed  Google Scholar 

  13. Jadach B, Świetlik W, Froelich A (2022) Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer. J Pharm Sci 111(5):1250–1261. https://doi.org/10.1016/j.xphs.2021.12.024

    Article  CAS  PubMed  Google Scholar 

  14. Chen K, Wang F, Liu S, Wu X, Xu L, Zhang D (2020) In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int J Biol Macromol 148:501–509. https://doi.org/10.1016/j.ijbiomac.2020.01.156

    Article  CAS  PubMed  Google Scholar 

  15. Verma A, Thakur S, Mamba G, Gupta RK, Thakur P, Thakur VK (2020) Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int J Biol Macromol 148:1130–1139. https://doi.org/10.1016/j.ijbiomac.2020.01.142

    Article  CAS  PubMed  Google Scholar 

  16. Kalla MLM, Jong EN, Kayem JG, Sreekumar M, Nisha P (2015) Effect of re-extraction parameters and drying temperature on the antioxidant properties and dietary fiber of Red sorrel (Hibiscus sabdariffa L.) calyces residues. Ind Crops Prod 74:680–688. https://doi.org/10.1016/j.indcrop.2015.05.028

    Article  CAS  Google Scholar 

  17. Zulfiqar S, Benton K, Hassan T, Marshall L, Boesch C (2019) In vitro and in vivo anti-diabetic properties of Hibiscus sabdariffa. Proceed Nut Society 78(OCE2). https://doi.org/10.1017/S0029665119000855

  18. Zakaria FR, Prangdimurti E, Damanik R (2015) Anti-inflammatory of purple roselle extract in diabetic rats induced by streptozotocin. Procedia Food Sci 3:182–189. https://doi.org/10.1016/j.profoo.2015.01.020

    Article  Google Scholar 

  19. Arogbodo JO, Faluyi OB, Igbe FO (2021) In vitro antimicrobial activity of ethanolic leaf extracts of Hibiscus Asper Hook. F. and Hibiscus Sabdariffa L. on some pathogenic bacteria. J Sci Res Medical Biol Sci 2(3):1–12. https://doi.org/10.47631/jsrmbs.v2i3.304

  20. Shalgum A, Govindarajulu M, Majrashi M, Ramesh S, Collier WE, Griffin G et al (2019) Neuroprotective effects of Hibiscus Sabdariffa against hydrogen peroxide-induced toxicity. J Herb Med 17:100253. https://doi.org/10.1016/j.hermed.2018.100253

    Article  Google Scholar 

  21. Huang J, Liu J, Chen M, Yao Q, Hu Y (2021) Immobilization of roselle anthocyanins into polyvinyl alcohol/hydroxypropyl methylcellulose film matrix: Study on the interaction behavior and mechanism for better shrimp freshness monitoring. Int J Biol Macromol 184:666–677. https://doi.org/10.1016/j.ijbiomac.2021.06.074

    Article  CAS  PubMed  Google Scholar 

  22. Eze FN, Jayeoye TJ, Singh S (2022) Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken riceberry phenolic extract. Food Chem 366:130574. https://doi.org/10.1016/j.foodchem.2021.130574

    Article  CAS  PubMed  Google Scholar 

  23. Nwabor OF, Singh S, Marlina D, Voravuthikunchai SP (2020) Chemical characterization, release, and bioactivity of Eucalyptus camaldulensis polyphenols from freeze-dried sodium alginate and sodium carboxymethyl cellulose matrix. Food Qual Saf 4(4):203–212. https://doi.org/10.1093/fqsafe/fyaa016

    Article  CAS  Google Scholar 

  24. Nwabor OF, Singh S, Syukri DM, Voravuthikunchai SP (2021) Bioactive fractions of Eucalyptus camaldulensis inhibit important foodborne pathogens, reduce listeriolysin O-induced haemolysis, and ameliorate hydrogen peroxide-induced oxidative stress on human embryonic colon cells. Food Chem 344:128571. https://doi.org/10.1016/j.foodchem.2020.128571

    Article  CAS  PubMed  Google Scholar 

  25. Singh S, Nwabor OF, Sukri DM, Wunnoo S, Dumjun K, Lethongkam S et al (2022) Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int J Biol Macromol 216:235–250. https://doi.org/10.1016/j.ijbiomac.2022.06.172

    Article  CAS  PubMed  Google Scholar 

  26. Ontong JC, Singh S, Nwabor OF, Chusri S, Voravuthikunchai SP (2020) Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol Lett 42(12):2653–2664. https://doi.org/10.1007/s10529-020-02971-5

    Article  CAS  PubMed  Google Scholar 

  27. Singh S, Dodiya TR, Singh S, Dodiya R (2021) Topical wound healing, antimicrobial and antioxidant potential of Mimosa pudica Linn root extracted using n-hexane followed by methanol, fortified in ointment base. Int J Pharm Sci Nanotech 14(3):5472–5480. https://doi.org/10.37285/ijpsn.2021.14.3.4

    Article  CAS  Google Scholar 

  28. Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP (2021) Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 182:1015–1025. https://doi.org/10.1016/j.ijbiomac.2021.04.027

    Article  CAS  PubMed  Google Scholar 

  29. Olatunji OJ, Olatunde OO, Jayeoye TJ, Singh S, Nalinbenjapun S, Sripetthong S et al (2022) New insights on Acanthus ebracteatus Vahl: UPLC-ESI-QTOF-MS profile, antioxidant, antimicrobial and anticancer activities. Molecules 27(6):1981. https://doi.org/10.3390/molecules27061981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP (2020) Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 36:100609. https://doi.org/10.1016/j.fbio.2020.100609

    Article  CAS  Google Scholar 

  31. Singh S, Nwabor OF, Ontong JC, Kaewnopparat N, Voravuthikunchai SP (2020) Characterization of a novel, co-processed bio-based polymer, and its effect on mucoadhesive strength. Int J Biol. https://doi.org/10.1016/j.ijbiomac.2019.11.198. Macromol145:865 – 75

    Article  Google Scholar 

  32. Li B, Wang J, Gui Q, Yang H (2020) Continuous production of uniform chitosan beads as hemostatic dressings by a facile flow injection method. J Mater Chem 8(35):7941–7946. https://doi.org/10.1039/D0TB01462A

    Article  CAS  Google Scholar 

  33. Ezati P, Riahi Z, Rhim JW (2022) CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocoll 122:107104. https://doi.org/10.1016/j.foodhyd.2021.107104

    Article  CAS  Google Scholar 

  34. Wang S, Chu Z, Ren M, Jia R, Zhao C, Fei D et al (2017) Identification of anthocyanin composition and functional analysis of an anthocyanin activator in Solanum nigrum fruits. Molecules 22(6):876. https://dx.doi.org/10.3390%2Fmolecules22060876

    Article  PubMed  PubMed Central  Google Scholar 

  35. Santos LG, Silva GFA, Gomes BM, Martins VG (2021) A novel sodium alginate active films functionalized with purple onion peel extract (Allium cepa). Biocatal Agri Biotech 35:102096. https://doi.org/10.1016/j.bcab.2021.102096

    Article  CAS  Google Scholar 

  36. Owoade A, Adetutu A, Olorunnisola O (2016) Identification of phenolic compounds in Hibiscus sabdariffa polyphenolic rich extract (HPE) by chromatography techniques. Br J Pharm Res 12:1–12. https://doi.org/10.9734/BJPR/2016/26955

    Article  CAS  Google Scholar 

  37. Maciel LG, do Carmo MAV, Azevedo L, Daguer H, Molognoni L, de Almeida MM et al (2018) Hibiscus sabdariffa anthocyanins-rich extract: chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem Toxicology 113:187–197. https://doi.org/10.1016/j.fct.2018.01.053

    Article  CAS  Google Scholar 

  38. Paraíso CM, dos Santos SS, Ogawa CYL, Sato F, dos Santos OA, Madrona GS (2020) Hibiscus sabdariffa L. extract: Characterization (FTIR-ATR), storage stability and food application. Emirates J Food Agri 55–61. https://doi.org/10.9755/ejfa.2020.v32.i1.2059

  39. Singh S, Chunglok W, Nwabor OF, Ushir YV, Singh S, Panpipat W (2022) Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications. J Polym Environm 30(3):938–953. https://doi.org/10.1007/s10924-021-02249-5

    Article  CAS  Google Scholar 

  40. Ahmed J, Tabish TA, Zhang S, Edirisinghe M (2020) Porous graphene composite polymer fibres. Polym 13(1):76. https://doi.org/10.3390/polym13010076

    Article  CAS  Google Scholar 

  41. Gómez-Aldapa CA, Díaz‐Cruz CA, Castro‐Rosas J, Jiménez‐Regalado EJ, Velazquez G, Gutierrez MC et al (2021) Development of antimicrobial biodegradable films based on corn starch with aqueous extract of Hibiscus sabdariffa L. Starch‐Starke 73(1–2):2000096. https://doi.org/10.1002/star.202000096

    Article  CAS  Google Scholar 

  42. Singh S, Nwabor OF, Ontong JC, Voravuthikunchai SP (2020) Characterization and assessment of compression and compactibility of novel spray-dried, co-processed bio-based polymer. J Drug Delivery Sci Tech 56:101526. https://doi.org/10.1016/j.jddst.2020.101526

    Article  CAS  Google Scholar 

  43. Liu S, Li Y, Li L (2017) Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydr Polym 160:62–70. https://doi.org/10.1016/j.carbpol.2016.12.048

    Article  CAS  PubMed  Google Scholar 

  44. Wu C, Li Y, Sun J, Lu Y, Tong C, Wang L et al (2020) Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocoll 98:105245. https://doi.org/10.1016/j.foodhyd.2019.105245

    Article  CAS  Google Scholar 

  45. Ngo TMP, Nguyen TH, Dang TMQ, Tran TX, Rachtanapun P (2020) Characteristics and antimicrobial properties of active edible films based on pectin and nanochitosan. Int J Mol Sci 21(6):2224. https://doi.org/10.3390/ijms21062224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193(4812):293–294. https://doi.org/10.1038/193293a0

    Article  CAS  PubMed  Google Scholar 

  47. Senturk Parreidt T, Müller K, Schmid M (2018) Alginate-based edible films and coatings for food packaging applications. Foods 7(10). https://doi.org/10.3390/foods7100170

  48. Wu Y, Huang A, Fan S, Liu Y, Liu X (2020) Crystal structure and mechanical properties of uniaxially stretched PA612/SiO2. Films Polym 12(3):711. https://doi.org/10.3390/polym12030711

    Article  CAS  Google Scholar 

  49. Nwabor OF, Singh S, Ontong JC, Vongkamjan K, Voravuthikunchai SP (2021) Valorization of wastepaper through antimicrobial functionalization with biogenic silver nanoparticles, a sustainable packaging composite. Waste and Biomass Valori 12(6):3287–3301. https://doi.org/10.1007/s12649-020-01237-5

    Article  CAS  Google Scholar 

  50. Priprem A, Damrongrungruang T, Limsitthichaikoon S, Khampaenjiraroch B, Nukulkit C, Thapphasaraphong S et al (2018) Topical niosome gel containing an anthocyanin complex: a potential oral wound healing in rats. AAPS PharmSciTech 19(4):1681–1692. https://doi.org/10.1208/s12249-018-0966-7

    Article  CAS  PubMed  Google Scholar 

  51. Moline H, Buta J, Newman I (1999) Prevention of browning of banana slices using natural products and their derivatives. J Food Quality 22(5):499–511. https://doi.org/10.1111/j.1745-4557.1999.tb00181.x

    Article  CAS  Google Scholar 

  52. Kaewklin P, Siripatrawan U, Suwanagul A, Lee YS (2018) Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int J Biol Macromol 112:523–529. https://doi.org/10.1016/j.ijbiomac.2018.01.124

    Article  CAS  PubMed  Google Scholar 

  53. Setianingsih S, Nurani LH, Rohman A (2018) Effect of the ethanolic extract of red roselle calyx (Hibiscus sabdariffa L.) on hematocrit, platelets, and erythrocytes in healthy volunteers. Pharmaciana 8(2):266. https://doi.org/10.12928/pharmaciana.v8i2.8738

    Article  Google Scholar 

  54. Njinga NS, Kola-Mustapha AT, Quadri AL, Atolani O, Ayanniyi RO, Buhari MO et al (2020) Toxicity assessment of sub-acute and sub-chronic oral administration and diuretic potential of aqueous extract of Hibiscus sabdariffa calyces. Heliyon 6(9):e04853. https://doi.org/10.1016/j.heliyon.2020.e04853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Builders PF, Kabele-Toge B, Builders M, Chindo BA, Anwunobi PA, Isimi YC (2013) Wound healing potential of formulated extract from Hibiscus sabdariffa calyx. Indian J Pharm Sci 75(1):45–52. https://doi.org/10.4103/0250-474X.113549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adanlawo I, Ajibade V (2006) Nutritive value of the two varieties of roselle (Hibiscus sabdariffa) calyces soaked with wood ash. Pakistan J Nutrition 5(6):555–557. https://doi.org/10.3923/pjn.2006.555.557

    Article  Google Scholar 

  57. MacIntire IC, Dowling MB, Raghavan SR (2020) How do amphiphilic biopolymers gel blood? an investigation using optical microscopy. Langmuir 36(29):8357–8366. https://doi.org/10.1021/acs.langmuir.0c00409

    Article  CAS  PubMed  Google Scholar 

  58. Poonguzhali R, Khaleel Basha S, Sugantha Kumari V (2018) Novel asymmetric chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation. Int J Biol Macromol 112:1300–1309. https://doi.org/10.1016/j.ijbiomac.2018.02.073

    Article  CAS  PubMed  Google Scholar 

  59. Su JF, Huang Z, Yuan XY, Wang XY, Li M (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr polym 79(1):145–153. https://doi.org/10.1016/j.carbpol.2009.07.035

    Article  CAS  Google Scholar 

  60. Deepika S, Harishkumar R, Dinesh M, Abarna R, Anbalagan M, Roopan SM et al (2017) Photocatalytic degradation of synthetic food dye, sunset yellow FCF (FD&C yellow no. 6) by Ailanthus excelsa Roxb. possessing antioxidant and cytotoxic activity. J Photochem Photobiology 177:44–55. https://doi.org/10.1016/j.jphotobiol.2017.10.015

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Thailand Science Research and Innovation Fund (Contract No. WU-FF64102), Thailand. Furthermore, the work was partly supported by Chiang Mai University Reinventing Postdoctoral fellowship (Contract no. 07/2022/CMU-MIS: R000030919) and Office of Research Administration, Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

Credit authorship contribution statement Sudarshan Singh: conceptualization, investigation, writing, reviewing, editing, and funding acquisition; Warangkana Chunglok: supervising, reviewing, and funding acquisition; Ozioma F Nwabor: reviewing; microbiological assay; Phuangthip Bhoopong: reviewing; Wanatsanan Chulrik and Chutima Jansakun formal analysis.

Corresponding authors

Correspondence to Sudarshan Singh or Warangkana Chunglok.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Chunglok, W., Nwabor, O.F. et al. Porous Biodegradable Sodium Alginate Composite Fortified with Hibiscus Sabdariffa L. Calyx Extract for the Multifarious Biological Applications and Extension of Climacteric Fruit Shelf-Life. J Polym Environ 31, 922–938 (2023). https://doi.org/10.1007/s10924-022-02596-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02596-x

Keywords

Navigation