Skip to main content
Log in

Preparation and Properties of Self-healing Triboelectric Nanogenerator Based on Waterborne Polyurethane Containing Diels–Alder Bonds

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A type of waterborne polyurethane (WPU) with excellent self-healing and recyclable properties was successfully prepared by introducing Diels–Alder (DA) reaction groups into it. FT-IR was used to verify the successful synthesis of samples and the retro-DA reaction in the WPU-DA films. It was found that the self-healing efficiency of the WPU-DA-4/4 films was 72.8%. After four cycle times, the self-healing efficiency could still achieve 49.7%. Moreover, the WPU-DA film could be applied as the positive friction layer to prepare a triboelectric nanogenerator (TENG). Working in contact-separation mode, the electrical outputs with 2 × 2 cm2 area can reach 58 V, 3.2 µA, 17.6 nC, respectively. It is also interesting to find that the electrical output properties of the TENG after damage-healed can be restored to more than 90% of the original one. The cross-linked WPU had good reprocessability and had great potential application prospects in intelligent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Xu M-H, Xia Y-S, Wu J-M, Sun X-K, Wang S, Hu G-H, Xiong C-X (2020) Chem Eng J 388:124205

    Article  CAS  Google Scholar 

  2. He L, Zhang C, Zhang B, Yang O, Yuan W, Zhou L, Zhao Z, Wu Z, Wang J, Wang ZL (2022) ACS Nano 16:6244–6254

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Yu X, Yin M, Wang J, Gao Q, Yu Y, Cheng T, Wang ZL (2021) Nano Energy 82:105740

    Article  CAS  Google Scholar 

  4. Song Y, Shi Z, Hu G-H, Xiong C, Isogai A, Yang Q (2021) J MateR Chem A 9:1910–1937

    Article  CAS  Google Scholar 

  5. He M, Du W, Feng Y, Li S, Wang W, Zhang X, Yu A, Wan L, Zhai J (2021) Nano Energy 86:106058

    Article  CAS  Google Scholar 

  6. Yun Y, Jang S, Cho S, Lee SH, Hwang HJ, Choi D (2021) Nano Energy 80:105525

    Article  CAS  Google Scholar 

  7. Zhang Q, Jiang C, Li X, Dai S, Ying Y, Ping J (2021) ACS Nano 15:12314–12323

    Article  CAS  PubMed  Google Scholar 

  8. Zhang S, Chi M, Mo J, Liu T, Liu Y, Fu Q, Wang J, Luo B, Qin Y, Wang S, Nie S-X (2022) Nat Commun 13:4168–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin Y, Mo J, Liu Y, Zhang S, Wang J, Fu Q, Wang S, Nie S-X (2022) Adv Funct Mater 32:2201846

    Article  CAS  Google Scholar 

  10. Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL (2020) Nano Energy 78:105398

    Article  Google Scholar 

  11. Yang D, Ni Y, Kong X, Li S, Chen X, Zhang L, Wang ZL (2021) ASC Nano 15:14653–14661

    Article  CAS  Google Scholar 

  12. Atiqah A, Mastura MT, Ali BAA, Jawaid M, Sapuan SM (2017) Curr Org Synth 14:233–248

    Article  CAS  Google Scholar 

  13. Fang Y-L, Xu J-H, Gao F, Du X-S, Du Z-L, Cheng X, Wang H-B (2021) Compos Part B-Eng 219:108965

    Article  CAS  Google Scholar 

  14. Xu J-H, Wang H, Du X-S, Cheng X, Du Z-L, Wang H-B (2021) ACS Appl Mater Inter 13:20427–20434

    Article  CAS  Google Scholar 

  15. Xu W, Zhang R-Y, Liu W, Zhu J, Dong X, Guo H-X, Hu G-H (2016) Macromolecules 49:5931–5944

    Article  CAS  Google Scholar 

  16. Gao W-C, Wu W, Chen C-Z, Zhao H, Liu Y, Li Q, Huang C-X, Hu G-H, Wang S-F, Shi D, Zhang Q-C (2022) ACS Appl Mater Inter 14:1874–1884

    Article  CAS  Google Scholar 

  17. Xie T, Vogt BD (2020) ACS Appl Mater Inter 12:49277–49280

    Article  CAS  Google Scholar 

  18. Fang Y, Du X, Jiang Y, Du Z, Pan P, Cheng X, Wang H (2018) ACS Sustain Chem Eng 6:14490–14500

    Article  CAS  Google Scholar 

  19. Bastos de Sousa FD, Scuracchio CH, Hu G-H, Hoppe S (2016) J Appl Polym Sci 133:43503

    Google Scholar 

  20. Bastos de Sousa FD, Scuracchio CH, Hu G-H, Hoppe S (2017) Polym Degrad Stabil 138:169–181

    Article  Google Scholar 

  21. Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F (2002) Science 295:1698–1702

    Article  CAS  PubMed  Google Scholar 

  22. Kim MS, Ryu KM, Lee SH, Choi YC, Rho S, Jeong YG (2021) Carbohyd Polym 258:117728

    Article  CAS  Google Scholar 

  23. Hadjadj A, Jbara O, Tara A, Gilliot M, Malek F, Maafi EM, Tighzert L (2016) Compos Struct 135:217–223

    Article  Google Scholar 

  24. Hu J, Huang Y, Xu G, Bao J, Cheng Q (2019) Fine Chemicals 36:400–406

    Google Scholar 

  25. Zhao H, Zhao S-Q, Hu G-H, Zhang Q-C, Liu Y, Huang C-X, Li W, Jiang T, Wang S-F (2019) Polym Advan Technol 30:2313–2320

    Article  CAS  Google Scholar 

  26. Zhang Q, Zhu X, Li J, Li P, Zhang J, Li B (2004) Chin J Appl Chem 21:1123–1126

    CAS  Google Scholar 

  27. Fang Y, Du X, Yang S, Wang H, Cheng X, Du Z (2019) Polym Chem 10:4142–4415

    Article  CAS  Google Scholar 

  28. Floros M, Hojabri L, Abraham E, Jose J, Thomas S, Pothan L, Leao AL, Narine S (2012) Polym Degrad Stab 97:1970–1978

    Article  CAS  Google Scholar 

  29. Chattopadhyay DK, Webster DC (2009) Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  30. Trovati G, Ap Sanches E, Neto SC, Mascarenhas YP, Chierice GO (2010) J Appl Polym Sci 115:263–268

    Article  CAS  Google Scholar 

  31. Liu N, Zhao Y, Kang M, Wang J, Wang X, Feng Y, Yin N, Li Q (2015) Prog Org Coat 82:46–56

    Article  CAS  Google Scholar 

  32. Cartier H, Hu G-H (1998) Polym Eng Sci 38:177–185

    Article  CAS  Google Scholar 

  33. Zhang X-M, Feng L-F, Hoppe S, Hu G-H (2008) Polym Eng Sci 48:19–28

    Article  Google Scholar 

  34. Hu G-H, Li H-X, Feng L-F (2002) Macromolecules 35:8247–8250

    Article  CAS  Google Scholar 

  35. Zhang X-M, Xu Z-B, Feng L-F, Song X-B, Hu G-H (2006) Polym Eng Sci 46:510–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by National Natural Science Foundation of China (22268009, 22005067), Guangxi Natural Science Foundation Program (2019GXNSFBA185006, 2020GXNSFBA159023), Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT202204), Foundation (No.2019ZR03) of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University and Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering (SKLBEE2020009).The authors also thank Xinfang Cui from the Shiyanjia lab (https://www.shiyanjia.com/).

Funding

Funding was supported by National Natural Science Foundation of China (Grant Nos. 22268009, 22005067), Guangxi Natural Science Foundation Program, (Grant Nos. 2019GXNSFBA185006, 2020GXNSFBA159023). Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT202204), Key Laboratory of Clean Pulp and Papermaking and Pollution Control, (Grant No. 2019ZR03). College of Light Industry and Food Engineering,Guangxi University and Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering, (Grant No. SKLBEE2020009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The online version contains supplementary material available at.

Supplementary file1 (DOCX 80 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, BX., Lu, CC., Li, Q. et al. Preparation and Properties of Self-healing Triboelectric Nanogenerator Based on Waterborne Polyurethane Containing Diels–Alder Bonds. J Polym Environ 30, 5252–5262 (2022). https://doi.org/10.1007/s10924-022-02586-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02586-z

Keywords

Navigation