Skip to main content
Log in

Tetracycline Adsorption from Aqueous Media by Magnetically Separable Fe3O4@Methylcellulose/APTMS: Isotherm, Kinetic and Thermodynamic Studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study aimed to synthesize Fe3O4@Methylcellulose/3-Aminopropyltrimethoxysilane (Fe3O4@MC/APTMS) as a new magnetic nano-biocomposite by a facile, fast, and new microwave-assisted method and to be utilized as an adsorbent for tetracycline (TC) removal from aqueous solutions. Fe3O4@MC/APTMS was characterized by Fourier transform-infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDS), Mapping, X-ray diffraction (XRD), Thermal gravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and vibrating sample magnetometer (VSM). The point of zero charge (pHzpc) value of the nano-biocomposite was estimated to be 6.8 by the solid addition method. Optimum conditions were obtained in TC concentration: 10 mg L−1, adsorbent dosage: 80 mg L−1, contact time: 90 min, and solution pH 6 with the maximum TC removal of 90% and 65.41% in synthetic and actual samples, respectively. The kinetic and isotherm equations pointed to a pseudo-second order kinetic and Langmuir isotherm optimum fitting models. Based on the values of entropy changes (ΔS) (50.04 J/mol k), the enthalpy changes (ΔH) (9.26 kJ/mol), and the negative Gibbs free energy changes (ΔG), the adsorption process was endothermic, random, and spontaneous. The synthesized adsorbent exhibited outstanding properties, including proper removal efficiency of TC, excellent reusability, and simple separation from aqueous media by a magnet. Consequently, it is highly desirable that Fe3O4@MC/APTMS magnetic nano-biocomposite could be used as a promising adsorbent for TC adsorption from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Asgari E, Sheikhmohammadi A, Yeganeh J (2020) Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: optimization, kinetic, thermodynamic and equilibrium studies. Int J Biol Macromol 164:694–706. https://doi.org/10.1016/j.ijbiomac.2020.07.188

    Article  CAS  PubMed  Google Scholar 

  2. Malakootian M, Nasiri A, Asadipour A, Kargar E (2019) Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media. Process Saf Environ Prot 129:138–151. https://doi.org/10.1016/j.psep.2019.06.022

    Article  CAS  Google Scholar 

  3. Tamaddon F, Nasiri A, Yazdanpanah G (2020) Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX 7:100764. https://doi.org/10.1016/j.mex.2019.12.005

    Article  Google Scholar 

  4. Das N, Madhavan J, Selvi A, Das D (2019) An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern. 3 Biotech 9:231. https://doi.org/10.1007/s13205-019-1766-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Azizi S, Alidadi H, Maaza M, Sarkhosh M (2020) Degradation of ofloxacin using the UV/ZnO/iodide process in an integrated photocatalytic-biological reactor containing baffles. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.0c04431

    Article  Google Scholar 

  6. Azizi S, Sarkhosh M, Najafpoor AA, Mohseni SM, Maaza M, Sadani M (2021) Degradation of Codeine Phosphate by simultaneous usage of eaq− and •OH radicals in photo-redox processes: Influencing factors, energy consumption, kinetics, intermediate products and degradation pathways. Optik 243:167415. https://doi.org/10.1016/j.ijleo.2021.167415

    Article  CAS  Google Scholar 

  7. Phoon BL, Ong CC, Mohamed Saheed MS, Show P-L, Chang J-S, Ling TC, Lam SS, Juan JC (2020) Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater 400:122961. https://doi.org/10.1016/j.jhazmat.2020.122961

    Article  PubMed  Google Scholar 

  8. Zhang Y, Jiao Z, Hu Y, Lv S, Fan H, Zeng Y, Hu J, Wang M (2017) Removal of tetracycline and oxytetracycline from water by magnetic Fe(3)O(4)@graphene. Environ Sci Pollut Res Int 24:2987–2995. https://doi.org/10.1007/s11356-016-7964-7

    Article  CAS  PubMed  Google Scholar 

  9. Minale M, Gu Z, Guadie A, Kabtamu DM, Li Y, Wang X (2020) Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: a review. J Environ Manag 276:111310. https://doi.org/10.1016/j.jenvman.2020.111310

    Article  CAS  Google Scholar 

  10. Xiong W, Zeng Z, Zeng G, Yang Z, Xiao R, Li X, Cao J, Zhou C, Chen H, Jia M, Yang Y, Wang W, Tang X (2019) Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution. Chem Eng J 374:91–99. https://doi.org/10.1016/j.cej.2019.05.164

    Article  CAS  Google Scholar 

  11. Arikan OA (2008) Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. J Hazard Mater 158:485–490. https://doi.org/10.1016/j.jhazmat.2008.01.096

    Article  CAS  PubMed  Google Scholar 

  12. Navalon S, Alvaro M, Garcia H (2008) Reaction of chlorine dioxide with emergent water pollutants: product study of the reaction of three β-lactam antibiotics with ClO2. Water Res 42:1935–1942. https://doi.org/10.1016/j.watres.2007.11.023

    Article  CAS  PubMed  Google Scholar 

  13. Malakootian M, Mahdizadeh H, Khavari M, Nasiri A, Gharaghani MA, Khatami M, Sahle-Demessie E, Varma RS (2020) Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103553

    Article  Google Scholar 

  14. Malakootian M, Nasiri A, Alibeigi A, Mahdizadeh H, Gharaghani M (2019) Synthesis and stabilization of ZnO nanoparticles on a glass plate to study the removal efficiency of acid red 18 by hybrid advanced oxidation process (ultraviolet/ZnO/ultrasonic). Desalin Water Treat 170:325–336. https://doi.org/10.5004/dwt.2019.24728

    Article  CAS  Google Scholar 

  15. Malakootian M, Smith A Jr, Gharaghani MA, Mahdizadeh H, Nasiri A, Yazdanpanah G (2020) Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface. Desalin Water Treat 182:385–394. https://doi.org/10.5004/dwt.2020.25216

    Article  CAS  Google Scholar 

  16. Hirose J, Kondo F, Nakano T, Kobayashi T, Hiro N, Ando Y, Takenaka H, Sano K (2005) Inactivation of antineoplastics in clinical wastewater by electrolysis. Chemosphere 60:1018–1024. https://doi.org/10.1016/j.chemosphere.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  17. Malakootian M, Nasiri A, Mahdizadeh H (2018) Preparation of CoFe(2)O(4)/activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Sci Technol 78:2158–2170. https://doi.org/10.2166/wst.2018.494

    Article  CAS  PubMed  Google Scholar 

  18. Malakootian M, Nasiri A, Mahdizadeh H (2019) Metronidazole adsorption on CoFe2O4/activated carbon@ chitosan as a new magnetic biocomposite: modelling, analysis, and optimization by response surface methodology. DWT 164:215–227

    Article  CAS  Google Scholar 

  19. Nasiri A, Tamaddon F, Mosslemin MH, Faraji M (2019) A microwave assisted method to synthesize nanoCoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation. MethodsX. https://doi.org/10.1016/j.mex.2019.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nasiri A, Tamaddon F, Mosslemin MH, Gharaghani MA, Asadipour A (2019) New magnetic nanobiocomposite CoFe2O4@methycellulose: facile synthesis, characterization, and photocatalytic degradation of metronidazole. J Mater Sci 30:8595–8610. https://doi.org/10.1007/s10854-019-01182-7

    Article  CAS  Google Scholar 

  21. Tamaddon F, Mosslemin MH, Asadipour A, Gharaghani MA, Nasiri A (2020) Microwave-assisted preparation of ZnFe(2)O(4)@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol 154:1036–1049. https://doi.org/10.1016/j.ijbiomac.2020.03.069

    Article  CAS  PubMed  Google Scholar 

  22. Nasiri A, Malakootian M, Shiri MA, Yazdanpanah G, Nozari M (2021) CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology. J Polym Res. https://doi.org/10.1007/s10965-021-02540-y

    Article  Google Scholar 

  23. Koyuncu I, Arikan OA, Wiesner MR, Rice C (2008) Removal of hormones and antibiotics by nanofiltration membranes. J Membr Sci 309:94–101. https://doi.org/10.1016/j.memsci.2007.10.010

    Article  CAS  Google Scholar 

  24. Guo W, Shi Y, Wang H, Yang H, Zhang G (2010) Intensification of sonochemical degradation of antibiotics levofloxacin using carbon tetrachloride. Ultrason Sonochem 17:680–684. https://doi.org/10.1016/j.ultsonch.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  25. Khoshnamvand N, Jafari A, Kamarehie B, Faraji M (2019) Optimization of adsorption and sonocatalytic degradation of fluoride by zeolitic imidazole framework-8 (ZIF-8) using RSM-CCD. Desalin Water Treat 171:270–280. https://doi.org/10.5004/dwt.2019.24775

    Article  CAS  Google Scholar 

  26. Linden KG, Mohseni M (2014) 2.8 - Advanced oxidation processes: applications in drinking water treatment. In: Ahuja S (ed) Comprehensive water quality and purification. Elsevier, Waltham, pp 148–172

    Chapter  Google Scholar 

  27. Wang T, Pan X, Ben W, Wang J, Hou P, Qiang Z (2017) Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J Environ Sci 52:111–117. https://doi.org/10.1016/j.jes.2016.03.017

    Article  CAS  Google Scholar 

  28. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329:99–113. https://doi.org/10.1016/j.scitotenv.2004.03.015

    Article  CAS  PubMed  Google Scholar 

  29. Kulkarni P, Olson ND, Raspanti GA, Rosenberg Goldstein RE, Gibbs SG, Sapkota A, Sapkota AR (2017) Antibiotic concentrations decrease during wastewater treatment but persist at low levels in reclaimed water. Int J Environ Res Public Health 14:668. https://doi.org/10.3390/ijerph14060668

    Article  CAS  PubMed Central  Google Scholar 

  30. Kaur G, Singh N, Rajor A (2021) Adsorption of doxycycline hydrochloride onto powdered activated carbon synthesized from pumpkin seed shell by microwave-assisted pyrolysis. Environ Technol Innov 23:101601. https://doi.org/10.1016/j.eti.2021.101601

    Article  CAS  Google Scholar 

  31. Carrales-Alvarado DH, Leyva-Ramos R, Rodríguez-Ramos I, Mendoza-Mendoza E, Moral-Rodríguez AE (2020) Adsorption capacity of different types of carbon nanotubes towards metronidazole and dimetridazole antibiotics from aqueous solutions: effect of morphology and surface chemistry. Environ Sci Pollut Res 27:17123–17137. https://doi.org/10.1007/s11356-020-08110-x

    Article  CAS  Google Scholar 

  32. Mahmoud ME, El-Ghanam AM, Mohamed RHA, Saad SR (2020) Enhanced adsorption of Levofloxacin and Ceftriaxone antibiotics from water by assembled composite of nanotitanium oxide/chitosan/nano-bentonite. Mater Sci Eng C 108:110199. https://doi.org/10.1016/j.msec.2019.110199

    Article  CAS  Google Scholar 

  33. Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ 532:112–126. https://doi.org/10.1016/j.scitotenv.2015.05.130

    Article  CAS  PubMed  Google Scholar 

  34. Malakootian M, Yaseri M, Faraji M (2019) Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. Environ Sci Pollut Res 26:8444–8458. https://doi.org/10.1007/s11356-019-04227-w

    Article  CAS  Google Scholar 

  35. Huang T, Tang X, Luo K, Wu Y, Hou X, Tang S (2021) An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. TrAC 139:116255. https://doi.org/10.1016/j.trac.2021.116255

    Article  CAS  Google Scholar 

  36. Qin L, Wang Z, Fu Y, Lai C, Liu X, Li B, Liu S, Yi H, Li L, Zhang M, Li Z, Cao W, Niu Q (2021) Gold nanoparticles-modified MnFe(2)O(4) with synergistic catalysis for photo-Fenton degradation of tetracycline under neutral pH. J Hazard Mater 414:125448. https://doi.org/10.1016/j.jhazmat.2021.125448

    Article  CAS  PubMed  Google Scholar 

  37. Zhou H, Cao Z, Zhang M, Ying Z, Ma L (2021) Zero-valent iron enhanced in-situ advanced anaerobic digestion for the removal of antibiotics and antibiotic resistance genes in sewage sludge. Sci Total Environ 754:142077. https://doi.org/10.1016/j.scitotenv.2020.142077

    Article  CAS  PubMed  Google Scholar 

  38. Sun X, He W, Yang T, Ji H, Liu W, Lei J, Liu Y, Cai Z (2021) Ternary TiO2/WO3/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: degradation mechanism and toxicity evaluation. Chem Eng J 412:128679. https://doi.org/10.1016/j.cej.2021.128679

    Article  CAS  Google Scholar 

  39. Duman O, Tunç S, Bozoğlan BK, Polat TG (2016) Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite. J Alloy Compd 687:370–383. https://doi.org/10.1016/j.jallcom.2016.06.160

    Article  CAS  Google Scholar 

  40. Duman O, Özcan C, Gürkan Polat T, Tunç S (2019) Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites. Environ Pollut 244:723–732. https://doi.org/10.1016/j.envpol.2018.10.071

    Article  CAS  PubMed  Google Scholar 

  41. Kharissova OV, Dias HVR, Kharisov BI (2015) Magnetic adsorbents based on micro- and nano-structured materials. RSC Adv 5:6695–6719. https://doi.org/10.1039/C4RA11423J

    Article  CAS  Google Scholar 

  42. Hosseinzehi M, Ehrampoush MH, Tamaddon F, Mokhtari M, Dalvand A (2021) Eco-environmental preparation of magnetic activated carbon modified with 3-aminopropyltrimethoxysilane (APTMS) from sawdust waste as a novel efficient adsorbent for humic acid removal: Characterisation, modelling, optimisation and equilibrium studies. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1928096

    Article  Google Scholar 

  43. Sereshti H, Duman O, Tunç S, Nouri N, Khorram P (2020) Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Microchim Acta 187:541. https://doi.org/10.1007/s00604-020-04527-w

    Article  CAS  Google Scholar 

  44. Jiang R, Zhu H-Y, Fu Y-Q, Zong E-M, Jiang S-T, Li J-B, Zhu J-Q, Zhu Y-Y (2021) Magnetic NiFe2O4/MWCNTs functionalized cellulose bioadsorbent with enhanced adsorption property and rapid separation. Carbohyd Polym 252:117158. https://doi.org/10.1016/j.carbpol.2020.117158

    Article  CAS  Google Scholar 

  45. Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287. https://doi.org/10.1021/es506351r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mohamed D, Dhamodaran A (2019) Magnetic cellulose green nanocomposite adsorbents for the removal of heavy metal ions in water/wastewater

  47. Ergun R, Guo J, Huebner-Keese B (2016) Cellulose. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health. Academic Press, Oxford, pp 694–702

    Chapter  Google Scholar 

  48. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  49. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH (2020) Nanocellulose: from fundamentals to advanced applications. Front Chem 8:392–392. https://doi.org/10.3389/fchem.2020.00392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  51. Jain A, Hirata GA, Farías MH, Castillón FF (2016) Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu(3+) red phosphor with enhanced quantum yield. Nanotechnology 27:065601. https://doi.org/10.1088/0957-4484/27/6/065601

    Article  CAS  PubMed  Google Scholar 

  52. Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B (2014) Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites. Appl Surf Sci 320:60–72. https://doi.org/10.1016/j.apsusc.2014.09.026

    Article  CAS  Google Scholar 

  53. Kegl T, Ban I, Lobnik A, Košak A (2019) Synthesis and characterization of novel γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles for dysprosium adsorption. J Hazard Mater 378:120764. https://doi.org/10.1016/j.jhazmat.2019.120764

    Article  CAS  PubMed  Google Scholar 

  54. Nasiri A, Malakootian M, Heidari MR, Asadzadeh SN (2021) CoFe2O4@Methylcelloluse as a new magnetic nano biocomposite for sonocatalytic degradation of reactive Blue 19. J Polym Environ. https://doi.org/10.1007/s10924-021-02074-w

    Article  Google Scholar 

  55. Hussien EM (2014) Development and validation of an HPLC method for tetracycline-related USP monographs. Biomed Chromatogr 28:1278–1283. https://doi.org/10.1002/bmc.3161

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Liu Y, Zhang C, Wen T, Zhuang L, Wang X, Song G, Chen D, Ai Y, Hayat T, Wang X (2018) Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chem Eng J 336:241–252. https://doi.org/10.1016/j.cej.2017.11.188

    Article  CAS  Google Scholar 

  57. Nasseh N, Barikbin B, Taghavi L, Nasseri MA (2019) Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies). Composites B 159:146–156. https://doi.org/10.1016/j.compositesb.2018.09.034

    Article  CAS  Google Scholar 

  58. Gupta D, Jamwal D, Rana D, Katoch A (2018) 26 - Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. In: Inamuddin AA, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Woodhead Publishing, Cambridge, pp 619–632

    Chapter  Google Scholar 

  59. Nain S, Singh R, Ravichandran S (2019) Importance of microwave heating in organic synthesis. Adv J Chem A 2:94–104

    Article  CAS  Google Scholar 

  60. Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K (2017) Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta A 185:317–335. https://doi.org/10.1016/j.saa.2017.05.045

    Article  CAS  Google Scholar 

  61. Giani G, Fedi S, Barbucci R (2012) Hybrid magnetic hydrogel: a potential system for controlled drug delivery by means of alternating magnetic fields. Polymers (Basel) 4:1157–1169. https://doi.org/10.3390/polym4021157

    Article  CAS  Google Scholar 

  62. Amirmahani N, Mahdizadeh H, Malakootian M, Pardakhty A, Mahmoodi NO (2020) Evaluating nanoparticles decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in adsorption of ciprofloxacin from aqueous environments. J Inorg Organomet Polym Mater 30:3540–3551. https://doi.org/10.1007/s10904-020-01499-5

    Article  CAS  Google Scholar 

  63. Lopez JA, González F, Bonilla FA, Zambrano G, Gómez ME (2010) Synthesis and characterization of Fe3O4 magnetic nanofluid. Revista Latinoamericana de Metalurgia y Materiales 30:60–66

    Google Scholar 

  64. Bao J, Zhu Y, Yuan S, Wang F, Tang H, Bao Z, Zhou H, Chen Y (2018) Adsorption of tetracycline with reduced graphene oxide decorated with MnFe2O4 nanoparticles. Nanosc Res Lett 13:396. https://doi.org/10.1186/s11671-018-2814-9

    Article  CAS  Google Scholar 

  65. Karami-Osboo R, Maham M, Nasrollahzadeh M (2020) Rapid and sensitive extraction of aflatoxins by Fe3O4/zeolite nanocomposite adsorbent in rice samples. Microchem J 158:105206. https://doi.org/10.1016/j.microc.2020.105206

    Article  CAS  Google Scholar 

  66. Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki PR (2017) Lead and chromium adsorption from water using L-cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci Rep 7:7672. https://doi.org/10.1038/s41598-017-03380-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang J, Khan MA, Xia M, Abdo AM, Lei W, Liao C, Wang F (2019) Facile hydrothermal synthesis of magnetic adsorbent CoFe2O4/MMT to eliminate antibiotics in aqueous phase: tetracycline and ciprofloxacin. Environ Sci Pollut Res 26:215–226. https://doi.org/10.1007/s11356-018-3452-6

    Article  CAS  Google Scholar 

  68. SenthilKumar P, Ramalingam S, Sathyaselvabala V, Kirupha SD, Sivanesan S (2011) Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell. Desalination 266:63–71

    Article  CAS  Google Scholar 

  69. Babaei AA, Ahmadi K, Kazeminezhad I, Alavi SN, Takdastan A (2016) Synthesis and application of magnetic hydroxyapatite for removal of tetracycline from aqueous solutions. J Mazandaran Univ Med Sci 26:146–159

    Google Scholar 

  70. Wang Z, Chen X, Meng Z, Zhao M, Zhan H, Liu W (2020) A water resistance magnetic graphene-anchored zeolitic imidazolate framework for efficient adsorption and removal of residual tetracyclines in wastewater. Water Sci Technol 81:2322–2336. https://doi.org/10.2166/wst.2020.283

    Article  CAS  PubMed  Google Scholar 

  71. Yang H, Yu X, Liu J, Wang L, Guo M (2019) Preparation of magnetic Fe3O4/activated carbon fiber and a study of the tetracycline adsorption in aquaculture wastewater. Mater Technol 53:505–510

    CAS  Google Scholar 

  72. Mohammed A, Lateef S (2019) Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: equilibrium, kinetic and isotherm studies. Alex Eng J. https://doi.org/10.1016/j.aej.2019.08.006

    Article  Google Scholar 

  73. Dada AO, Olalekan AP, Olatunya AM, Dada OJIJC (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn 2+ unto phosphoric acid modified rice husk. J Appl Chem 3:38–45. https://doi.org/10.9790/5736-0313845

    Article  CAS  Google Scholar 

  74. Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour Ind 15:14–27. https://doi.org/10.1016/j.wri.2016.06.001

    Article  Google Scholar 

  75. Fan H-T, Shi L-Q, Shen H, Chen X, Xie K-P (2016) Equilibrium, isotherm, kinetic and thermodynamic studies for removal of tetracycline antibiotics by adsorption onto hazelnut shell derived activated carbons from aqueous media. RSC Adv 6:109983–109991. https://doi.org/10.1039/C6RA23346E

    Article  CAS  Google Scholar 

  76. Chang J, Shen Z, Hu X, Schulman E, Cui C, Guo Q, Tian H (2020) Adsorption of tetracycline by shrimp shell waste from aqueous solutions: adsorption isotherm, kinetics modeling, and mechanism. ACS Omega 5:3467–3477. https://doi.org/10.1021/acsomega.9b03781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ayranci E, Duman O (2010) Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions. Chem Eng J 156:70–76. https://doi.org/10.1016/j.cej.2009.09.038

    Article  CAS  Google Scholar 

  78. Liu J, Zhou B, Zhang H, Ma J, Mu B, Zhang W (2019) A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution. Biores Technol 294:122152. https://doi.org/10.1016/j.biortech.2019.122152

    Article  CAS  Google Scholar 

  79. Ma Y, Li M, Li P, Yang L, Wu L, Gao F, Qi X, Zhang Z (2021) Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Biores Technol 319:124199. https://doi.org/10.1016/j.biortech.2020.124199

    Article  CAS  Google Scholar 

  80. Miao J, Wang F, Chen Y, Zhu Y, Zhou Y, Zhang S (2019) The adsorption performance of tetracyclines on magnetic graphene oxide: A novel antibiotics absorbent. Appl Surf Sci 475:549–558. https://doi.org/10.1016/j.apsusc.2019.01.036

    Article  CAS  Google Scholar 

  81. Gadipelly C, Pérez-González A, Yadav GD, Ortiz I, Ibáñez R, Rathod VK, Marathe KV (2014) Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res 53:11571–11592

    Article  CAS  Google Scholar 

  82. Saleem M (2007) Pharmaceutical wastewater treatment: a physicochemical study. J Res (Science) 18:125–134

    Google Scholar 

  83. Szulejko JE, Kim K-H (2019) Is the maximum adsorption capacity obtained at high VOC pressures (>1000 Pa) really meaningful in real-world applications for the sorptive removal of VOCs under ambient conditions (<1 Pa)? Sep Purif Technol 228:115729. https://doi.org/10.1016/j.seppur.2019.115729

    Article  CAS  Google Scholar 

  84. Liu Y, Li J, Wu L, Shi Y, He Q, Chen J, Wan D (2020) Magnetic spent bleaching earth carbon (Mag-SBE@C) for efficient adsorption of tetracycline hydrochloride: response surface methodology for optimization and mechanism of action. Sci Total Environ 722:137817. https://doi.org/10.1016/j.scitotenv.2020.137817

    Article  CAS  PubMed  Google Scholar 

  85. Jia Y, Liu J, Cha S, Choi S, Park YC, Liu C (2017) Magnetically separable Au-TiO2/nanocube ZnFe2O4 composite for chlortetracycline removal in wastewater under visible light. J Ind Eng Chem 47:303–314. https://doi.org/10.1016/j.jiec.2016.12.001

    Article  CAS  Google Scholar 

  86. Lu Z, Yu Z, Dong J, Song M, Liu Y, Liu X, Ma Z, Su H, Yan Y, Huo P (2018) Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline. Chem Eng J 337:228–241. https://doi.org/10.1016/j.cej.2017.12.115

    Article  CAS  Google Scholar 

  87. Ding H, Bian G (2015) Adsorption of metronidazole in aqueous solution by Fe-modified sepiolite. Desalin Water Treat 55:1620–1628. https://doi.org/10.1080/19443994.2014.927332

    Article  CAS  Google Scholar 

  88. Rathod M, Haldar S, Basha S (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: Equilibrium, kinetic and thermodynamic studies. Ecol Eng 84:240–249. https://doi.org/10.1016/j.ecoleng.2015.09.031

    Article  Google Scholar 

  89. Qin S, Su L, Wang P, Gao Y (2015) Rapid and selective extraction of multiple sulfonamides from aqueous samples based on Fe3O4–chitosan molecularly imprinted polymers. Anal Methods 7:8704–8713. https://doi.org/10.1039/C5AY01499A

    Article  CAS  Google Scholar 

  90. Tao J, Yang J, Ma C, Li J, Du K, Wei Z, Chen C, Wang Z, Zhao C, Deng X (2020) Cellulose nanocrystals/graphene oxide composite for the adsorption and removal of levofloxacin hydrochloride antibiotic from aqueous solution. R Soc Open Sci 7:200857–200857. https://doi.org/10.1098/rsos.200857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was Master of Science thesis of Sobhan Maleky, a student of Environmental Health Engineering in Kerman University of Medical Sciences. This work was supported by the Vice-Chancellor for Research and Technology of Kerman University of Medical Sciences under grant number 99001100 and the code of research ethics certificate IR.KMU.REC.1400.004. The authors would like to acknowledge the Environmental Health Engineering Research Center of Kerman University of Medical Sciences.

Funding

This work was supported by the Vice-Chancellor for Research and Technology of Kerman University of Medical Sciences under Grant Number 99001100 and the code of research ethics certificate IR.KMU.REC.1400.004.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [SM], [AN], [MF], [AA] and [RL]. The first draft of the manuscript was written by [SM] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maryam Faraji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleky, S., Asadipour, A., Nasiri, A. et al. Tetracycline Adsorption from Aqueous Media by Magnetically Separable Fe3O4@Methylcellulose/APTMS: Isotherm, Kinetic and Thermodynamic Studies. J Polym Environ 30, 3351–3367 (2022). https://doi.org/10.1007/s10924-022-02428-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02428-y

Keywords

Navigation